Summary
The Miocene (ˈmaɪ.əsiːn,_-oʊ- ) is the first geological epoch of the Neogene Period and extends from about (Ma). The Miocene was named by Scottish geologist Charles Lyell; the name comes from the Greek words μείων (, "less") and καινός (, "new") and means "less recent" because it has 18% fewer modern marine invertebrates than the Pliocene has. The Miocene is preceded by the Oligocene and is followed by the Pliocene. As Earth went from the Oligocene through the Miocene and into the Pliocene, the climate slowly cooled towards a series of ice ages. The Miocene boundaries are not marked by a single distinct global event but consist rather of regionally defined boundaries between the warmer Oligocene and the cooler Pliocene Epoch. During the Early Miocene, Afro-Arabia collided with Eurasia, severing the connection between the Mediterranean and Indian Oceans, and allowing a faunal interchange to occur between Eurasia and Africa, including the dispersal of proboscideans into Eurasia. During the late Miocene, the connections between the Atlantic and Mediterranean closed, causing the Mediterranean Sea to nearly completely evaporate, in an event called the Messinian salinity crisis. The Strait of Gibraltar opened and the Mediterranean refilled at the Miocene–Pliocene boundary, in an event called the Zanclean flood. The apes first evolved, arose, and diversified during the early Miocene (Aquitanian and Burdigalian Stages), becoming widespread in the Old World. By the end of this epoch and the start of the following one, the ancestors of humans had split away from the ancestors of the chimpanzees to follow their own evolutionary path during the final Messinian Stage (7.5–5.3 Ma) of the Miocene. As in the Oligocene before it, grasslands continued to expand and forests to dwindle in extent. In the seas of the Miocene, kelp forests made their first appearance and soon became one of Earth's most productive ecosystems. The plants and animals of the Miocene were recognizably modern. Mammals and birds were well-established.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (196)
Miocene
The Miocene (ˈmaɪ.əsiːn,_-oʊ- ) is the first geological epoch of the Neogene Period and extends from about (Ma). The Miocene was named by Scottish geologist Charles Lyell; the name comes from the Greek words μείων (, "less") and καινός (, "new") and means "less recent" because it has 18% fewer modern marine invertebrates than the Pliocene has. The Miocene is preceded by the Oligocene and is followed by the Pliocene. As Earth went from the Oligocene through the Miocene and into the Pliocene, the climate slowly cooled towards a series of ice ages.
Pliocene
The Pliocene (pronˈplaɪ.əsiːn,_ˈplaɪ.oʊ- ; also Pleiocene) is the epoch in the geologic time scale that extends from 5.333 million to 2.58 million years ago. It is the second and most recent epoch of the Neogene Period in the Cenozoic Era. The Pliocene follows the Miocene Epoch and is followed by the Pleistocene Epoch. Prior to the 2009 revision of the geologic time scale, which placed the four most recent major glaciations entirely within the Pleistocene, the Pliocene also included the Gelasian Stage, which lasted from 2.
Eocene
The Eocene (ˈiːəsiːn,_ˈiːoʊ- ) Epoch is a geological epoch that lasted from about 56 to 33.9 million years ago (Ma). It is the second epoch of the Paleogene Period in the modern Cenozoic Era. The name Eocene comes from the Ancient Greek ἠώς (ēṓs, "dawn") and καινός (kainós, "new") and refers to the "dawn" of modern ('new') fauna that appeared during the epoch. The Eocene spans the time from the end of the Paleocene Epoch to the beginning of the Oligocene Epoch.
Show more
Related courses (1)
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Related lectures (19)
Biomineralization: Paleoclimatology and Foraminifera
Explores paleoclimatology using foraminifera as proxies and addresses the Cool-tropics Paradox.
Foraminifera and Diagenesis
Explores foraminifera as paleoclimate proxies and diagenesis processes, addressing challenges in sea surface temperature reconstructions.
Quantum Mechanics: State Systems
Covers the fundamentals of quantum mechanics, focusing on state systems and observable measurements.
Show more