In evolutionary biology, adaptive radiation is a process in which organisms diversify rapidly from an ancestral species into a multitude of new forms, particularly when a change in the environment makes new resources available, alters biotic interactions or opens new environmental niches. Starting with a single ancestor, this process results in the speciation and phenotypic adaptation of an array of species exhibiting different morphological and physiological traits. The prototypical example of adaptive radiation is finch speciation on the Galapagos ("Darwin's finches"), but examples are known from around the world. Four features can be used to identify an adaptive radiation: A common ancestry of component species: specifically a recent ancestry. Note that this is not the same as a monophyly in which all descendants of a common ancestor are included. A phenotype-environment correlation: a significant association between environments and the morphological and physiological traits used to exploit those environments. Trait utility: the performance or fitness advantages of trait values in their corresponding environments. Rapid speciation: presence of one or more bursts in the emergence of new species around the time that ecological and phenotypic divergence is underway. Adaptive radiations are thought to be triggered by an ecological opportunity or a new adaptive zone. Sources of ecological opportunity can be the loss of antagonists (competitors or predators), the evolution of a key innovation or dispersal to a new environment. Any one of these ecological opportunities has the potential to result in an increase in population size and relaxed stabilizing (constraining) selection. As genetic diversity is positively correlated with population size the expanded population will have more genetic diversity compared to the ancestral population. With reduced stabilizing selection phenotypic diversity can also increase. In addition, intraspecific competition will increase, promoting divergent selection to use a wider range of resources.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (14)
The History of Life on Earth
Explores the history of life on Earth, from molecules to mass extinctions and adaptive radiations.
RF-ID antennas II: Implantable and Standards
Explores RF-ID antenna measurement, standards, SAR, and antenna design for implanted and wearable systems.
Radiation and Antennas: Characteristic Parameters
Covers the characteristic parameters of antennas and their importance in design.
Show more
Related publications (32)
Related concepts (24)
Speciation
Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within lineages. Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book On the Origin of Species. He also identified sexual selection as a likely mechanism, but found it problematic.
Cichlid
Cichlids ˈsɪklᵻdz are fish from the family Cichlidae in the order Cichliformes. Cichlids were traditionally classed in a suborder, the Labroidei, along with the wrasses (Labridae), in the order Perciformes, but molecular studies have contradicted this grouping. On the basis of fossil evidence, it first appeared in Tanzania during the Eocene epoch, about 46–45 million years ago. The closest living relative of cichlids is probably the convict blenny, and both families are classified in the 5th edition of Fishes of the World as the two families in the Cichliformes, part of the subseries Ovalentaria.
Invasive species
An invasive or alien species is an introduced species to an environment that becomes overpopulated and harms its new environment. Invasive species adversely affect habitats and bioregions, causing ecological, environmental, and/or economic damage. The term can also be used for native species that become harmful to their native environment after human alterations to its food web - for example, the purple sea urchin (Strongylocentrotus purpuratus) which has decimated kelp forests along the northern California coast due to overharvesting of its natural predator, the California sea otter (Enhydra lutris).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.