In mathematics, -equivalence, or contact equivalence, is an equivalence relation between map germs. It was introduced by John Mather in his seminal work in Singularity theory in the 1960s as a technical tool for studying stable maps. Since then it has proved important in its own right. Roughly speaking, two map germs ƒ, g are -equivalent if ƒ−1(0) and g−1(0) are diffeomorphic. Two map germs are -equivalent if there is a diffeomorphism of the form Ψ(x,y) = (φ(x),ψ(x,y)), satisfying, and In other words, Ψ maps the graph of f to the graph of g, as well as the graph of the zero map to itself. In particular, the diffeomorphism φ maps f−1(0) to g−1(0). The name contact is explained by the fact that this equivalence is measuring the contact between the graph of f and the graph of the zero map. Contact equivalence is the appropriate equivalence relation for studying the sets of solution of equations, and finds many applications in dynamical systems and bifurcation theory, for example. It is easy to see that this equivalence relation is weaker than A-equivalence, in that any pair of -equivalent map germs are necessarily -equivalent. This modification of -equivalence was introduced by James Damon in the 1980s. Here V is a subset (or subvariety) of Y, and the diffeomorphism Ψ above is required to preserve not but (that is, ). In particular, Ψ maps f−1(V) to g−1(V).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.