Summary
In solid-state NMR spectroscopy, magic-angle spinning (MAS) is a technique routinely used to produce better resolution NMR spectra. MAS NMR consists in spinning the sample (usually at a frequency of 1 to 130 kHz) at the magic angle θm (ca. 54.74°, where cos2θm=1/3) with respect to the direction of the magnetic field. Three main interactions responsible in solid state NMR (dipolar, chemical shift anisotropy, quadrupolar) often lead to very broad and featureless NMR lines. However, these three interactions in solids are orientation-dependent and can be averaged to some extent by MAS: The nuclear dipolar interaction has a dependence, where is the angle between the internuclear axis and the main magnetic field. As a result, the dipolar interaction vanish at the magic angle θm and the interaction contributing to the line broadening is removed. Even though all internuclear vectors cannot be all set to the magic angle, rotating the sample around this axis produces the same effect, provided the frequency is comparable to that of the interaction. In addition, a set of spinning sidebands appear on the spectra, which are sharp lines separated from the isotropic resonance frequency by a multiple of the spinning rate. The chemical shift anisotropy (CSA) represents the orientation-dependence of the chemical shift. Powder patterns generated by the CSA interaction can be averaged by MAS, resulting to one single resonance centred at the isotropic chemical shift (centre of mass of the powder pattern). The quadrupolar interaction is only partially averaged by MAS leaving a residual secondary quadrupolar interaction. In solution-state NMR, most of these interactions are averaged out because of the rapid time-averaged molecular motion that occurs due to the thermal energy (molecular tumbling). The physical spinning of the sample is achieved via an impulse air turbine mechanism, where the sample tube is lifted with a bearing compressed gas to remove friction, and then spun with a drive gas. Sample tubes are hollow cylinders coming in a variety of outer diameters ranging from 0.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (60)