Cartographic generalization, or map generalization, includes all changes in a map that are made when one derives a smaller-scale map from a larger-scale map or map data. It is a core part of cartographic design. Whether done manually by a cartographer or by a computer or set of algorithms, generalization seeks to abstract spatial information at a high level of detail to information that can be rendered on a map at a lower level of detail.
The cartographer has license to adjust the content within their maps to create a suitable and useful map that conveys spatial information, while striking the right balance between the map's purpose and the precise detail of the subject being mapped. Well generalized maps are those that emphasize the most important map elements while still representing the world in the most faithful and recognizable way.
During the first half of the 20th century, cartographers began to think seriously about how the features they drew depended on scale. Eduard Imhof, one of the most accomplished academic and professional cartographers at the time, published a study of city plans on maps at a variety of scales in 1937, itemizing several forms of generalization that occurred, including those later termed symbolization, merging, simplification, enhancement, and displacement. As analytical approaches to geography arose in the 1950s and 1960s, generalization, especially line simplification and raster smoothing, was a target of study.
Generalization was probably the most thoroughly studied aspect of cartography from the 1970s to the 1990s. This is probably because it fit within both of the major two research trends of the era: cartographic communication (especially signal processing algorithms based on Information theory), and the opportunities afforded by technological advance (because of its potential for automation). Early research focused primarily on algorithms for automating individual generalization operations.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A map symbol or cartographic symbol is a graphical device used to visually represent a real-world feature on a map, working in the same fashion as other forms of symbols. Map symbols may include point markers, lines, regions, continuous fields, or text; these can be designed visually in their shape, size, color, pattern, and other graphic variables to represent a variety of information about each phenomenon being represented.
A geologic map or geological map is a special-purpose map made to show various geological features. Rock units or geologic strata are shown by color or symbols. Bedding planes and structural features such as faults, folds, are shown with strike and dip or trend and plunge symbols which give three-dimensional orientations features. Stratigraphic contour lines may be used to illustrate the surface of a selected stratum illustrating the subsurface topographic trends of the strata.
A visual variable, in cartographic design, graphic design, and data visualization, is an aspect of a graphical object that can visually differentiate it from other objects, and can be controlled during the design process. The concept was first systematized by Jacques Bertin, a French cartographer and graphic designer, and published in his 1967 book, Sémiologie Graphique. Bertin identified a basic set of these variables and provided guidance for their usage; the concept and the set of variables has since been expanded, especially in cartography, where it has become a core principle of education and practice.
Motivated by ever-increasing soil degradation and artificialization due to past and present urban growth dynamics, the current trend of spatial planning policies at the European and Swiss levels is promoting increased soil protection, by avoiding new devel ...
EPFL2021
Covers the characteristics of a Polytechnic university, geomatics elements, map types, and cartography quality.
Explains the translation of for-expressions in Scala using map, flatmap, and filter functions, with examples and a discussion on its generalization to different types.
Offers a hands-on demonstration of the Gemini-SEM 300, covering 3D imaging, EDX analysis, and specimen mapping.
Centimetre level precision mapping is essential for many applications such as land-use, infrastructure inspection, cultural heritage preservation, and construction site monitoring. However, the acquisition and its preparation (in particular the setting of ...
Data visualization is a recent domain that founds his roots in the eighties, but its history dates back to more ancient times in other representations such as diagrams, drawings, or maps. In particular, data visualization is hard to take advantage of the h ...