Concept

Vertical seismic profile

Summary
In geophysics, vertical seismic profile (VSP) is a technique of seismic measurements used for correlation with surface seismic data. The defining characteristic of a VSP (of which there are many types) is that either the energy source, or the detectors (or sometimes both) are in a borehole. In the most common type of VSP, hydrophones, or more often geophones or accelerometers, in the borehole record reflected seismic energy originating from a seismic source at the surface. There are numerous methods for acquiring a vertical seismic profile (VSP). Zero-offset VSPs (A) have sources close to the wellbore directly above receivers. Offset VSPs (B) have sources some distance from the receivers in the wellbore. Walkaway VSPs (C) feature a source that is moved to progressively farther offset and receivers held in a fixed location. Walk-above VSPs (D) accommodate the recording geometry of a deviated well, having each receiver in a different lateral position and the source directly above the receiver. Salt-proximity VSPs (E) are reflection surveys to help define a salt-sediment interface near a wellbore by using a source on top of a salt dome away from the drilling rig. Drill-noise VSPs (F), also known as seismic-while-drilling (SWD) VSPs, use the noise of the drill bit as the source and receivers laid out along the ground. Multi-offset VSPs (G) involve a source some distance from numerous receivers in the wellbore. A vertical seismic profile is constructed to identify a value known as a source wavelet. This is useful when it comes to a process known as deconvolution. Deconvolution allows for a more readable and more focused VSP. The idea is that the VSP reports any abnormal seismic activity and deconvolution allows for a more focused profile on these abnormal activities. VSPs are used to measure a seismic signal at depth and with that measurement the wavelength at the source of the seismic activity is easily found.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.