The thin film lithium-ion battery is a form of solid-state battery. Its development is motivated by the prospect of combining the advantages of solid-state batteries with the advantages of thin-film manufacturing processes.
Thin-film construction could lead to improvements in specific energy, energy density, and power density on top of the gains from using a solid electrolyte. It allows for flexible cells only a few microns thick. It may also reduce manufacturing costs from scalable roll-to-roll processing and even allow for the use of cheap materials.
Lithium-ion batteries store chemical energy in reactive chemicals at the anodes and cathodes of a cell. Typically, anodes and cathodes exchange lithium (Li+) ions through a fluid electrolyte that passes through a porous separator which prevents direct contact between the anode and cathode. Such contact would lead to an internal short circuit and a potentially hazardous uncontrolled reaction. Electric current is usually carried by conductive collectors at the anodes and cathodes to and from the negative and positive terminals of the cell (respectively).
In a thin-film lithium battery the electrolyte is solid and the other components are deposited in layers on a substrate. In some designs, the solid electrolyte also serves as a separator.
Cathode materials in thin film lithium ion batteries are the same as in classical lithium ion batteries. They are normally metal oxides that are deposited as a film by various methods.
Metal oxide materials are shown below as well as their relative specific capacities (Λ), open circuit voltages (Voc), and energy densities (DE).
There are various methods being used to deposit thin film cathode materials onto the current collector.
In Pulsed Laser Deposition, materials are fabricated by controlling parameters such as laser energy and fluence, substrate temperature, background pressure, and target-substrate distance.
In Magnetron Sputtering the substrate is cooled for deposition.
In Chemical Vapor Deposition, volatile precursor materials are deposited onto a substrate material.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the significance of SMES systems, superconductivity, and lithium-ion batteries, highlighting their roles in energy storage and global sustainability.
Explores the significance of energy storage technologies in balancing energy supply and demand, covering various storage options and their implications.
In physics, energy density is the amount of energy stored in a given system or region of space per unit volume. It is sometimes confused with energy per unit mass which is properly called specific energy or . Often only the useful or extractable energy is measured, which is to say that inaccessible energy (such as rest mass energy) is ignored. In cosmological and other general relativistic contexts, however, the energy densities considered are those that correspond to the elements of the stress-energy tensor and therefore do include mass energy as well as energy densities associated with pressure.
Lithium-ion batteries with enhanced rate performance are of crucial importance for practical applications. Extensive studies on the structural design and surface modification of electrode materials with the aim of improving the rate performance have been r ...
ROYAL SOC CHEMISTRY2022
The current restrictions on the registration of combustion engines in different countries and the harmful impacts of fossil fuels on the environment and human health have motivated decision-makers to use batteries and/or fuel cells as alternatives for comb ...
Research and development of flexible lithium-ion batteries (LIBs) with high energy density and long cycle life for portable and wearable electronic devices has been a cutting-edge effort in recent years. In this paper, a novel flexible self-standing anode ...