Summary
Amine gas treating, also known as amine scrubbing, gas sweetening and acid gas removal, refers to a group of processes that use aqueous solutions of various alkylamines (commonly referred to simply as amines) to remove hydrogen sulfide (H2S) and carbon dioxide (CO2) from gases. It is a common unit process used in refineries, and is also used in petrochemical plants, natural gas processing plants and other industries. Processes within oil refineries or chemical processing plants that remove Hydrogen Sulfide are referred to as "sweetening" processes because the odor of the processed products is improved by the absence of "sour" hydrogen sulfide. An alternative to the use of amines involves membrane technology. However, membrane separation is less attractive due to the relatively high capital and operating costs as well as other technical factors. Many different amines are used in gas treating: Diethanolamine (DEA) Monoethanolamine (MEA) Methyldiethanolamine (MDEA) Diisopropanolamine (DIPA) Aminoethoxyethanol (Diglycolamine) (DGA) The most commonly used amines in industrial plants are the alkanolamines DEA, MEA, and MDEA. These amines are also used in many oil refineries to remove sour gases from liquid hydrocarbons such as liquified petroleum gas (LPG). Gases containing or both and are commonly referred to as sour gases or acid gases in the hydrocarbon processing industries. The chemistry involved in the amine treating of such gases varies somewhat with the particular amine being used. For one of the more common amines, monoethanolamine (MEA) denoted as RNH2, the acid-base reaction involving the protonation of the amine electron pair to form a positively charged ammonium group (RNH) can be expressed as: RNH2 + RNH + HS− RNH2 + H2CO3 RNH + HCO3− The resulting dissociated and ionized species being more soluble in solution are trapped, or scrubbed, by the amine solution and so easily removed from the gas phase. At the outlet of the amine scrubber, the sweetened gas is thus depleted in and .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (3)