Concept

Electron paramagnetic resonance

Related courses (30)
PHYS-420: Solid state physics IV
Solid State Physics IV provides a materials and experimental technique oriented introduction to the electronic and magnetic properties of strongly correlated electron systems. Established knowledge is
MSE-715: Fundamentals of STEM lmaging and Spectroscopy
Lectures as well as hands-on trainings concerning different STEM imaging and spectroscopy techniques. Fundamentals of STEM, basic and advanced STEM imaging (ABF, ADF, iDPC, and 4D STEM), aberration-co
CH-340: Methods in spectroscopy and dynamics
We will review modern technique for the determination of structure and dynamics in chemistry. Recent developments in spectroscopy as well as methods that target the fundamentals of chemical reactions
CH-401: Advanced nuclear magnetic resonance
Principles of Magnetic Resonance Imaging (MRI) and applications to medical imaging. Principles of modern multi-dimensional NMR in liquids and solids. Structure determination of proteins & materials. M
PHYS-438: Fundamentals of biomedical imaging
The goal of this course is to illustrate how modern principles of basic science approaches are integrated into the major biomedical imaging modalities of importance to biology and medicine, with an em
PHYS-468: Physics of life
Life has emerged on our planet from physical principles such as molecular self-organization, thermodynamics, stochastics and iterative refinement. This course will introduce the physical methods to st
PHYS-443: Physics of nuclear reactors
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
PHYS-640: Neutron and X-ray Scattering of Quantum Materials
Neutron and X-ray scattering are some of the most powerful and versatile experimental methods to study the structure and dynamics of materials on the atomic scale. This course covers basic theory, ins
PHYS-745: Spin Dynamics
The course is conceived in the perspective of understanding the fundamentals of spintronics. This implies learning about magnetism at the quantum mechanical level, mechanisms for spin relaxation and
ME-426: Micro/Nanomechanical devices
In this course we will see an overview of the exciting field of Micro and Nanomechanical systems. We will go over the dfferent scaling laws that dominate the critical parameters, how size affects mat

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.