Concept

Stephen Hawking

Stephen William Hawking (8 January 1942 – 14 March 2018) was an English theoretical physicist, cosmologist, and author who, at the time of his death, was director of research at the Centre for Theoretical Cosmology at the University of Cambridge. Between 1979 and 2009, he was the Lucasian Professor of Mathematics at the University of Cambridge, widely viewed as one of the most prestigious academic posts in the world. Hawking was born in Oxford into a family of physicians. In October 1959, at the age of 17, he began his university education at University College, Oxford, where he received a first-class BA degree in physics. In October 1962, he began his graduate work at Trinity Hall at the University of Cambridge where, in March 1966, he obtained his PhD degree in applied mathematics and theoretical physics, specialising in general relativity and cosmology. In 1963, at age 21, Hawking was diagnosed with an early-onset slow-progressing form of motor neurone disease that gradually, over decades, paralysed him. After the loss of his speech, he communicated through a speech-generating device initially through use of a handheld switch, and eventually by using a single cheek muscle. Hawking's scientific works included a collaboration with Roger Penrose on gravitational singularity theorems in the framework of general relativity, and the theoretical prediction that black holes emit radiation, often called Hawking radiation. Initially, Hawking radiation was controversial. By the late 1970s and following the publication of further research, the discovery was widely accepted as a major breakthrough in theoretical physics. Hawking was the first to set out a theory of cosmology explained by a union of the general theory of relativity and quantum mechanics. He was a vigorous supporter of the many-worlds interpretation of quantum mechanics. Hawking achieved commercial success with several works of popular science in which he discussed his theories and cosmology in general. His book A Brief History of Time appeared on the Sunday Times bestseller list for a record-breaking 237 weeks.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (3)
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
PHYS-402: Astrophysics V : observational cosmology
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen from the point of view of observations.
PHYS-426: Quantum physics IV
Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,
Related lectures (29)
Semi classical Approximation: Fixed Energy Propagator
Explores the semi classical approximation for the fixed energy propagator in quantum physics, emphasizing barrier penetration and saddle points.
Quantum Theory and Hawking Radiation
Covers the development of quantum theory and Hawking radiation in the context of General Relativity.
Gravitational Waves: Energy and Flux
Explores the energy carried by gravitational waves and the total power radiated in a binary system.
Show more
Related publications (13)

A generalization of the Hawking black hole area theorem

Veronica Sacchi

Hawking's black hole area theorem was proven using the null energy condition (NEC), a pointwise condition violated by quantum fields. The violation of the NEC is usually cited as the reason that black hole evaporation is allowed in the context of semiclass ...
Springer/Plenum Publishers2024

Magnetogenesis in Higgs-Starobinsky inflation

Oleksandr Sobol

In the framework of mixed Higgs-Starobinsky inflation, we consider the generation of Abelian gauge fields due to their nonminimal coupling to gravity (in two different formulations of gravity-metric and Palatini). We couple the gauge-field invariants F mu ...
2022

Cogno-Vest: A Torso-Worn, Force Display to Experimentally Induce Specific Hallucinations and Related Bodily Sensations

Olaf Blanke, Hannes Bleuler, Jevita Potheegadoo, Oliver Alan Kannape, Masayuki Hara, Kenny Jeanmonod, Atena Fadaeijouybari

Recent advances in virtual reality and robotic technologies have allowed researchers to explore the mechanisms underlying bodily aspects of self-consciousness which are largely attributed to the multisensory and sensorimotor processing of bodily signals (b ...
2021
Show more
Related concepts (45)
Bekenstein bound
In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of energy—or conversely, the maximal amount of information required to perfectly describe a given physical system down to the quantum level. It implies that the information of a physical system, or the information necessary to perfectly describe that system, must be finite if the region of space and the energy are finite.
Loop quantum gravity
Loop quantum gravity (LQG) is a theory of quantum gravity, which aims to reconcile quantum mechanics and general relativity, incorporating matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Einstein's geometric formulation rather than the treatment of gravity as a mysterious mechanism (force). As a theory LQG postulates that the structure of space and time is composed of finite loops woven into an extremely fine fabric or network.
Hawking radiation
Hawking radiation is the theoretical thermal black body radiation released outside a black hole's event horizon. This is counterintuitive because once ordinary electromagnetic radiation is inside the event horizon, it cannot escape. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974. Hawking radiation is predicted to be extremely faint and is many orders of magnitude below the current best telescopes' detecting ability.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.