External fertilization is a mode of reproduction in which a male organism's sperm fertilizes a female organism's egg outside of the female's body. It is contrasted with internal fertilization, in which sperm are introduced via insemination and then combine with an egg inside the body of a female organism. External fertilization typically occurs in water or a moist area to facilitate the movement of sperm to the egg. The release of eggs and sperm into the water is known as spawning. In motile species, spawning females often travel to a suitable location to release their eggs. However, sessile species are less able to move to spawning locations and must release gametes locally. Among vertebrates, external fertilization is most common in amphibians and fish. Invertebrates utilizing external fertilization are mostly benthic, sessile, or both, including animals such as coral, sea anemones, and tube-dwelling polychaetes. Benthic marine plants also use external fertilization to reproduce. Environmental factors and timing are key challenges to the success of external fertilization. While in the water, the male and female must both release gametes at similar times in order to fertilize the egg. Gametes spawned into the water may also be washed away, eaten, or damaged by external factors. Sexual selection may not seem to occur during external fertilization, but there are ways it actually can. The two types of external fertilizers are nest builders and broadcast spawners. For female nest builders, the main choice is the location of where to lay her eggs. A female can choose a nest close to the male she wants to fertilize her eggs, but there is no guarantee that the preferred male will fertilize any of the eggs. Broadcast spawners have a very weak selection, due to the randomness of releasing gametes. To look into the effect of female choice on external fertilization, an in vitro sperm competition experiment was performed. The results concluded that there was a decreased importance of sperm number, but increased the importance of the sperm velocity, thus changing the outcome of sperm competition.