JRuby is an implementation of the Ruby programming language atop the Java Virtual Machine, written largely in Java. It is free software released under a three-way EPL/GPL/LGPL license. JRuby is tightly integrated with Java to allow the embedding of the interpreter into any Java application with full two-way access between the Java and the Ruby code (similar to Jython for the Python language).
JRuby's lead developers are Charles Oliver Nutter and Thomas Enebo, with many current and past contributors including Ola Bini and Nick Sieger. In September 2006, Sun Microsystems hired Enebo and Nutter to work on JRuby full-time. In June 2007, ThoughtWorks hired Ola Bini to work on Ruby and JRuby.
In July 2009, the JRuby developers left Sun to continue JRuby development at Engine Yard. In May 2012, Nutter and Enebo left Engine Yard to work on JRuby at Red Hat.
JRuby was originally created by Jan Arne Petersen, in 2001. At that time and for several years following, the code was a direct port of the Ruby 1.6 C code. With the release of Ruby 1.8.6, an effort began to update JRuby to 1.8.6 features and semantics. Since 2001, several contributors have assisted the project, leading to the current () core team of around six members.
JRuby 1.1 added Just-in-time compilation and Ahead-of-time compilation modes to JRuby and was already faster in most cases than the then-current Ruby 1.8.7 reference implementation.
JRuby packages are available for most platforms; Fedora 9 was among the first to include it as a standard package at JRuby 1.1.1.
In July 2009, the core JRuby developers at Sun Microsystems, Charles Oliver Nutter, Thomas Enebo and Nick Sieger, joined Engine Yard to continue JRuby development. In May 2012, Nutter and Enebo left Engine Yard to work on JRuby at Red Hat.
JRuby has supported compatibility with Ruby MRI versions 1.6 through 1.9.3. JRuby 1.0 supported Ruby 1.8.6, with JRuby 1.4.0 updating that compatibility to Ruby 1.8.7. JRuby 1.6.0 added simultaneous support for Ruby 1.9.2, with JRuby 1.7.0 making Ruby 1.9.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Java is a set of computer software and specifications developed by James Gosling at Sun Microsystems that provides a system for developing application software and deploying it in a cross-platform computing environment. Java is used in a wide variety of computing platforms from embedded devices and mobile phones to enterprise servers and supercomputers. Java applets, which are less common than standalone Java applications, were commonly run in secure, sandboxed environments to provide many features of native applications through being embedded in HTML pages.
In computing, Java bytecode is the bytecode-structured instruction set of the Java virtual machine (JVM), a virtual machine that enables a computer to run programs written in the Java programming language and several other programming languages, see List of JVM languages. A Java programmer does not need to be aware of or understand Java bytecode at all. However, as suggested in the IBM developerWorks journal, "Understanding bytecode and what bytecode is likely to be generated by a Java compiler helps the Java programmer in the same way that knowledge of assembly helps the C or C++ programmer.
Object-Oriented Programming (OOP) is a programming paradigm based on the concept of "objects", which can contain data and code. The data is in the form of fields (often known as attributes or properties), and the code is in the form of procedures (often known as methods). A common feature of objects is that procedures (or methods) are attached to them and can access and modify the object's data fields. In this brand of OOP, there is usually a special name such as or used to refer to the current object.
Achieving sub-millisecond response times in a managed language environment such as Java introduces significant implementation challenges. The Achilles' heel of Java is its reliance on automatic memory management for reclaiming dead objects. Typically, the ...
EPFL2008
,
There is an impedance mismatch between message-passing concurrency and virtual machines, such as the JVM. VMs usually map their threads to heavyweight OS processes. Without a lightweight process abstraction, users are often forced to write parts of concurr ...
2009
,
There is an impedance mismatch between message-passing concurrency and virtual machines, such as the JVM. VMs usually map their threads to heavyweight OS processes. Without a lightweight process abstraction, users are often forced to write parts of concurr ...