In computer networking, link aggregation is the combining (aggregating) of multiple network connections in parallel by any of several methods. Link aggregation increases total throughput beyond what a single connection could sustain, and provides redundancy where all but one of the physical links may fail without losing connectivity. A link aggregation group (LAG) is the combined collection of physical ports.
Other umbrella terms used to describe the concept include trunking, bundling, bonding, channeling or teaming.
Implementation may follow vendor-independent standards such as Link Aggregation Control Protocol (LACP) for Ethernet, defined in IEEE 802.1AX or the previous IEEE 802.3ad, but also proprietary protocols.
Link aggregation increases the bandwidth and resilience of Ethernet connections.
Bandwidth requirements do not scale linearly. Ethernet bandwidths historically have increased tenfold each generation: 10 megabit/s, 100 Mbit/s, 1000 Mbit/s, 10,000 Mbit/s. If one started to bump into bandwidth ceilings, then the only option was to move to the next generation, which could be cost prohibitive. An alternative solution, introduced by many of the network manufacturers in the early 1990s, is to use link aggregation to combine two physical Ethernet links into one logical link. Most of these early solutions required manual configuration and identical equipment on both sides of the connection.
There are three single points of failure inherent to a typical port-cable-port connection, in either a computer-to-switch or a switch-to-switch configuration: the cable itself or either of the ports the cable is plugged into can fail. Multiple logical connections can be made, but many of the higher level protocols were not designed to fail over completely seamlessly. Combining multiple physical connections into one logical connection using link aggregation provides more resilient communications.
Network architects can implement aggregation at any of the lowest three layers of the OSI model.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will teach operating systems and networks in an integrated fashion,emphasising the fundamental concepts and techniques that make their interaction possible/practical. Core lectures will be
1ère année: bases nécessaires à la représentation informatique 2D (3D).
Passage d'un à plusieurs logiciels: compétence de choisir les outils adéquats en 2D et en 3D.
Mise en relation des outils de CAO
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.
IEEE 802.1aq is an amendment to the IEEE 802.1Q networking standard which adds support for Shortest Path Bridging (SPB). This technology is intended to simplify the creation and configuration of Ethernet networks while enabling multipath routing. SPB is designed to replace the older spanning tree protocols: IEEE 802.1D STP, IEEE 802.1w RSTP, and IEEE 802.1s MSTP.
The Spanning Tree Protocol (STP) is a network protocol that builds a loop-free logical topology for Ethernet networks. The basic function of STP is to prevent bridge loops and the broadcast radiation that results from them. Spanning tree also allows a network design to include backup links providing fault tolerance if an active link fails. As the name suggests, STP creates a spanning tree that characterizes the relationship of nodes within a network of connected layer-2 bridges, and disables those links that are not part of the spanning tree, leaving a single active path between any two network nodes.
Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connec ...
This paper introduces protocols for authenticated private information retrieval. These schemes enable a client to fetch a record from a remote database server such that (a) the server does not learn which record the client reads, and (b) the client either ...
The new EU proect ETIP Hydropower (September 2022 - August 2025) will closely link the EERA Joint Programme Hydropower to the new European Technology and Innovation Platform (ETIP) for hydropower. It succeeds the HYDROPOWER EUROPE project (2018-2022) which ...