Concept

2 51 honeycomb

DISPLAYTITLE:2 51 honeycomb In 8-dimensional geometry, the 251 honeycomb is a space-filling uniform tessellation. It is composed of 241 polytope and 8-simplex facets arranged in an 8-demicube vertex figure. It is the final figure in the 2k1 family. It is created by a Wythoff construction upon a set of 9 hyperplane mirrors in 8-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram. Removing the node on the short branch leaves the 8-simplex. Removing the node on the end of the 5-length branch leaves the 241. The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 8-demicube, 151. The edge figure is the vertex figure of the vertex figure. This makes the rectified 7-simplex, 051.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.