Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
MomentumIn Newtonian mechanics, momentum (: momenta or momentums; more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity (also a vector quantity), then the object's momentum p (from Latin pellere "push, drive") is: In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is equivalent to the newton-second.
Quantum opticsQuantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons. Photons have been used to test many of the counter-intuitive predictions of quantum mechanics, such as entanglement and teleportation, and are a useful resource for quantum information processing. Light propagating in a restricted volume of space has its energy and momentum quantized according to an integer number of particles known as photons.
Action (physics)In physics, action is a scalar quantity describing how a physical system has changed over time (its dynamics). Action is significant because the equations of motion of the system can be derived through the principle of stationary action. In the simple case of a single particle moving with a constant velocity (uniform linear motion), the action is the momentum of the particle times the distance it moves, added up along its path; equivalently, action is twice the particle's kinetic energy times the duration for which it has that amount of energy.
Albert Einstein'Albert Einstein' (ˈaɪnstaɪn ; ˈalbɛʁt ˈʔaɪnʃtaɪn; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely held to be one of the greatest and most influential scientists of all time. Best known for developing the theory of relativity, he also made important contributions to quantum mechanics, and was thus a central figure in the revolutionary reshaping of the scientific understanding of nature that modern physics accomplished in the first decades of the twentieth century.
Leaning Tower of PisaThe Leaning Tower of Pisa (torre pendente di Pisa), or simply, the Tower of Pisa (torre di Pisa ˈtorre di ˈpiːza; ˈpiːsa), is the campanile, or freestanding bell tower, of Pisa Cathedral. It is known for its nearly four-degree lean, the result of an unstable foundation. The tower is one of three structures in the Pisa's Cathedral Square (Piazza del Duomo), which includes the cathedral and Pisa Baptistry. The height of the tower is from the ground on the low side and on the high side. The width of the walls at the base is .
Isaac NewtonSir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author who was described in his time as a natural philosopher. He was a key figure in the Scientific Revolution and the Enlightenment that followed. His pioneering book Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), first published in 1687, consolidated many previous results and established classical mechanics.
Impulse (physics)In classical mechanics, impulse (symbolized by J or Imp) is the change in momentum of an object. If the initial momentum of an object is p1, and a subsequent momentum is p2, the object has received an impulse J: Momentum is a vector quantity, so impulse is also a vector quantity. Newton’s second law of motion states that the rate of change of momentum of an object is equal to the resultant force F acting on the object: so the impulse J delivered by a steady force F acting for time Δt is: The impulse delivered by a varying force is the integral of the force F with respect to time: The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s).
Degrees of freedom (mechanics)In physics, the degrees of freedom (DOF) of a mechanical system is the number of independent parameters that define its configuration or state. It is important in the analysis of systems of bodies in mechanical engineering, structural engineering, aerospace engineering, robotics, and other fields. The position of a single railcar (engine) moving along a track has one degree of freedom because the position of the car is defined by the distance along the track.
Galilean invarianceGalilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ship was moving or stationary.