X-ray bursters are one class of X-ray binary stars exhibiting X-ray bursts, periodic and rapid increases in luminosity (typically a factor of 10 or greater) that peak in the X-ray region of the electromagnetic spectrum. These astrophysical systems are composed of an accreting neutron star and a main sequence companion 'donor' star. There are two types of X-ray bursts, designated I and II. Type I bursts are caused by thermonuclear runaway, while type II arise from the release of gravitational (potential) energy liberated through accretion. For type I (thermonuclear) bursts, the mass transferred from the donor star accumulates on the surface of the neutron star until it ignites and fuses in a burst, producing X-rays. The behaviour of X-ray bursters is similar to the behaviour of recurrent novae. In the latter case the compact object is a white dwarf that accretes hydrogen that finally undergoes explosive burning.
The compact object of the broader class of X-ray binaries is either a neutron star or a black hole; however, with the emission of an X-ray burst, the compact object can immediately be classified as a neutron star, since black holes do not have a surface and all of the accreting material disappears past the event horizon. X-ray binaries hosting a neutron star can be further subdivided based on the mass of the donor star; either a high mass (above 10 solar masses ()) or low mass (less than ) X-ray binary, abbreviated as HMXB and LMXB, respectively.
X-ray bursts typically exhibit a sharp rise time (1–10 seconds) followed by spectral softening (a property of cooling black bodies). Individual burst energetics are characterized by an integrated flux of 1032–1033 joules, compared to the steady luminosity which is of the order 1030 W for steady accretion onto a neutron star. As such the ratio α of the burst flux to the persistent flux ranges from 10 to 1000 but is typically on the order of 100.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In astronomy, the term compact star (or compact object) refers collectively to white dwarfs, neutron stars, and black holes. It would grow to include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density, compared to ordinary atomic matter. Compact stars are often the endpoints of stellar evolution and, in this respect, are also called stellar remnants.
An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms object and body are often used interchangeably. However, an astronomical body or celestial body is a single, tightly bound, contiguous entity, while an astronomical or celestial object is a complex, less cohesively bound structure, which may consist of multiple bodies or even other objects with substructures.
Thermal runaway describes a process that is accelerated by increased temperature, in turn releasing energy that further increases temperature. Thermal runaway occurs in situations where an increase in temperature changes the conditions in a way that causes a further increase in temperature, often leading to a destructive result. It is a kind of uncontrolled positive feedback. In chemistry (and chemical engineering), thermal runaway is associated with strongly exothermic reactions that are accelerated by temperature rise.
X-rays have been observed in natural downward cloud-to-ground lightning for over 20 years and in rocket-triggered lightning for slightly less. In both cases, this energetic radiation has been detected during the stepped and dart leader phases of downward n ...
2024
We investigate the fueling mechanisms of supermassive black holes (SMBHs) by analyzing 10 zoom-in cosmological simulations of massive galaxies, with stellar masses 1011-12 M circle dot and SMBH masses 108.9-9.7 M circle dot at z = 0, featuring various majo ...
Context. This paper presents a study of the galaxy Lyman-alpha luminosity function (LF) using a large sample of 17 lensing clusters observed by the Multi Unit Spectroscopic Explorer (MUSE) at the ESO Very Large Telescope (VLT). The magnification resulting ...