Invariant (physics)In theoretical physics, an invariant is an observable of a physical system which remains unchanged under some transformation. Invariance, as a broader term, also applies to the no change of form of physical laws under a transformation, and is closer in scope to the mathematical definition. Invariants of a system are deeply tied to the symmetries imposed by its environment. Invariance is an important concept in modern theoretical physics, and many theories are expressed in terms of their symmetries and invariants.
Philosophy of physicsIn philosophy, philosophy of physics deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists. Philosophy of physics can be broadly divided into three areas: interpretations of quantum mechanics: mainly concerning issues with how to formulate an adequate response to the measurement problem and understand what the theory says about reality.
Spacetime topologySpacetime topology is the topological structure of spacetime, a topic studied primarily in general relativity. This physical theory models gravitation as the curvature of a four dimensional Lorentzian manifold (a spacetime) and the concepts of topology thus become important in analysing local as well as global aspects of spacetime. The study of spacetime topology is especially important in physical cosmology. There are two main types of topology for a spacetime M. As with any manifold, a spacetime possesses a natural manifold topology.
Conservation of massIn physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change, so the quantity can neither be added nor be removed. Therefore, the quantity of mass is conserved over time. The law implies that mass can neither be created nor destroyed, although it may be rearranged in space, or the entities associated with it may be changed in form.
Scientific formalismScientific formalism is a family of approaches to the presentation of science. It is viewed as an important part of the scientific method, especially in the physical sciences. There are multiple levels of scientific formalism possible. At the lowest level, scientific formalism deals with the symbolic manner in which the information is presented. To achieve formalism in a scientific theory at this level, one starts with a well defined set of axioms, and from this follows a formal system.
The Unreasonable Effectiveness of Mathematics in the Natural Sciences"The Unreasonable Effectiveness of Mathematics in the Natural Sciences" is a 1960 article by the physicist Eugene Wigner. In the paper, Wigner observes that a physical theory's mathematical structure often points the way to further advances in that theory and even to empirical predictions. Wigner begins his paper with the belief, common among those familiar with mathematics, that mathematical concepts have applicability far beyond the context in which they were originally developed.
Mathematical beautyMathematical beauty is the aesthetic pleasure derived from the abstractness, purity, simplicity, depth or orderliness of mathematics. Mathematicians may express this pleasure by describing mathematics (or, at least, some aspect of mathematics) as beautiful or describe mathematics as an art form, (a position taken by G. H. Hardy) or, at a minimum, as a creative activity. Comparisons are made with music and poetry. Mathematicians describe an especially pleasing method of proof as elegant.
PhysicistA physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate causes of phenomena, and usually frame their understanding in mathematical terms. They work across a wide range of research fields, spanning all length scales: from sub-atomic and particle physics, through biological physics, to cosmological length scales encompassing the universe as a whole.
Nordström's theory of gravitationIn theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.
Richard FeynmanRichard Phillips Feynman (ˈfaɪnmən; May 11, 1918 – February 15, 1988) was an American theoretical physicist, known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, the physics of the superfluidity of supercooled liquid helium, as well as his work in particle physics for which he proposed the parton model. For his contributions to the development of quantum electrodynamics, Feynman received the Nobel Prize in Physics in 1965 jointly with Julian Schwinger and Shin'ichirō Tomonaga.