Radiosensitivity is the relative susceptibility of cells, tissues, organs or organisms to the harmful effect of ionizing radiation.
Cells are least sensitive when in the S phase, then the G1 phase, then the G2 phase, and most sensitive in the M phase of the cell cycle. This is described by the 'law of Bergonié and Tribondeau', formulated in 1906: X-rays are more effective on cells which have a greater reproductive activity.
From their observations, they concluded that quickly dividing tumor cells are generally more sensitive than the majority of body cells. This is not always true. Tumor cells can be hypoxic and therefore less sensitive to X-rays because most of their effects are mediated by the free radicals produced by ionizing oxygen.
It has meanwhile been shown that the most sensitive cells are those that are undifferentiated, well nourished, dividing quickly and highly active metabolically. Amongst the body cells, the most sensitive are spermatogonia and erythroblasts, epidermal stem cells, gastrointestinal stem cells. The least sensitive are nerve cells and muscle fibers.
Very sensitive cells are also oocytes and lymphocytes, although they are resting cells and do not meet the criteria described above. The reasons for their sensitivity are not clear.
There also appears to be a genetic basis for the varied vulnerability of cells to ionizing radiation. This has been demonstrated across several cancer types and in normal tissues.
The damage to the cell can be lethal (the cell dies) or sublethal (the cell can repair itself). Cell damage can ultimately lead to health effects which can be classified as either Tissue Reactions or Stochastic Effects according to the International Commission on Radiological Protection.
Tissue reactions have a threshold of irradiation under which they do not appear and above which they typically appear. Fractionation of dose, dose rate, the application of antioxidants and other factors may affect the precise threshold at which a tissue reaction occurs.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This is an introductory course in radiation physics that aims at providing students with a foundation in radiation protection and with information about the main applications of radioactive sources/su
Explores the basics of radiotherapy, including biological principles, types, techniques, and classical methods used in fighting cancer.
Covers the basics of radiation protection, including interactions with matter, dose concepts, and shielding techniques.
Covers the interaction of radiations with matter, dose concepts, and radiation shielding.
In this paper, the total ionizing dose (TID) response of a commercial 28-nm high-k CMOS technology at ultrahigh doses is measured and discussed. The degradation of pMOSFETs depends not only on the channel width but also on the channel length. Short-channel ...
Homologous recombination is a high-fidelity DNA repair pathway. Besides a critical role in accurate chromosome segregation during meiosis, recombination functions in DNA repair and in the recovery of stalled or broken replication forks to ensure genomic st ...