Related people (21)
François Maréchal
Ph D. in engineering– Chemical process engineer Researcher and lecturer in the field of computer aided process and energy systems engineering. Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL. I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation. Short summary of my scientific carrer After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering. In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems. Since 2001, I’m working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where I’m leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern : Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems. I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Jeremy Luterbacher
  • Master’s degree in Chemical Engineering obtained in 2007 at the Swiss Federal Institute of Technology, Lausanne (EPFL) (enrolled fall 2005, currently in 3rd semester). Relevant courses: Advanced Separation Processes, Advanced Chemical Reaction Engineering, Process Development and Polymer Chemistry and Macromolecular Engineering.  - Bachelor’s degree in Chemistry and Chemical Engineering obtained in 2005 at the Swiss Federal Institute of Technology, Lausanne (EPFL). Relevant courses: Transport phenomena, Separation processes, Process command, Applied Energetics, Chemical Reaction Engineering, Chemical Kinetics, Quantum chemistry and Thermodynamics.  - High school Maturity completed at the Nyon High School, 2002 (major subjects: biology-chemistry, advanced math, and Latin). Maturity essay completed 12-2001 with distinction  - Secondary School certificate obtained in 1999 at the Gland secondary School, Latin-Greek section
Jan Van Herle
Born in Antwerp, Belgium. In Switzerland since 1983. Became Swiss citizen in 2004 out of conviction of principles of democracy and bottom-up participation. No double nationality. Village Council Member for 2 five-year mandates in 2006-2016. 1987 : Chemist from Basel University (CH). 1988 : Post-graduate IT diploma from Basel Engineering School. 1989 : Industry internship ABB Baden (CH). 1990-1993 : PhD Thesis EPFL, on Solid Oxide Fuel Cell cathode reaction mechanisms. 1994-1995 : Japanese Postdoctoral Fellowship in Tsukuba, Japan, on ceramic powders. 1995-2000 : Researcher at EPFL, Dpt. Chemistry : project responsible in PPM2 (materials), FP4-BriteEuram, NEDO (Japan), Swiss Gas Union (CH, oxygen membranes). 1998-2000 : Masters in Energy Technology, EPFL. 2000 : Cofounder of HTceramix SA (EPFL spin-off), now based in Yverdon (14 employees). Taken over by SOLIDpower in 2007, now 250 employees with 70 MCHF raised. 2000 : 1st Assistant and lecturer at LENI (STI-IGM) : fuel cell group responsible, projects on biogas (Federal Energy Office), woodgas (CCEM), fuel cell stacking (CTI, FP6, FNS), ceramic separation membranes (COST, FNS), microtubes (STI Seed), stability/lifetime/reliability in fuel cells (Electricité de France, swisselectric research). Currently 4 Ph D theses ongoing, 14 theses concluded, of which 5 colateral with SB and IMX. M.E.R. since Nov 2008. Total funding raised so far >18 MCHF (50% as main applicant; 30% outside CH; 20% industry). Scientific output : >135 peer-reviewed publications, >120 conference papers, 40 invited presentations (8 keynotes), >70 granted proposals. Fluent in 5 languages (Dutch, French, German ( Swiss-german), English, Spanish).
Paul Joseph Dyson
Paul Dyson joined the Institute of Chemical Sciences and Engineering at the EPFL in 2002 where he heads the Laboratory of Organometallic and Medicinal Chemistry and between 2008 and 2016 chaired the Institute. He has won several prizes including the Werner Prize of the Swiss Chemical Society in 2004, the Award for Outstanding Achievements in Bioorganometallic Chemistry in 2010, the Centennial Luigi Sacconi Medal of the Italian Chemical Society in 2011, the Bioinorganic Chemistry Award of the Royal Society of Chemistry in 2015, the European Sustainable Chemistry Award of the European Chemical Society in 2018 and the Green Chemistry Award from the Royal Society of Chemistry in 2020. He is also a Clarivate Highly Cited Researcher and has an H-index >110 (web of science and google scholar). He was elected a Fellow of the Royal Society of Chemistry in 2010, a Fellow of the European Academy of Science in 2019 and a life-long fellow of the American Association for the Advancement of Science in 2020. Over the years he has held visiting professorships at the University of Bourgogne, University of Pierre et Marie Curie, University of Vienna, University of Rome Tor Vergara, Chimie Paristech and Shangai Jiao Tong University.Since 2016 he has been Member of the Council of the Division of Mathematics, Natural and Engineering Sciences at the Swiss National Science Foundation.Between 2016-2021 he has been Member of the Council of the Division of Mathematics, Natural and Engineering Sciences at the Swiss National Science Foundation. In 2021 he was appointed Dean of the Faculty of Basic Sciences.
Christos Comninellis
Christos Comninellis, of Greek origin, born in 1945, received his Bachelor of Science in chemistry (distinction with honor) in 1970 from the University of Alexandria. From 1971 to 1975, he worked as a chemist at the Institute of chemical engineering at the EPFL, where he achieved his PhD in technical sciences in 1979 for his research on the electrochemical fluorination of organic compounds in anhydrous hydrogen fluoride. Appointed professor in 1996, he teaches at the Faculty of Basic Sciences (FSB) of the Swiss Federal Institute of Technology, Lausanne (EPFL) • Applied Chemistry. • Transport Phenomena. • Chemical and Electrochemical Technologies Related to the Environment. • Electrochemical Engineering. He also holds a teaching position at the Haute Ecole Valaisanne –Sion (HEVs). His research work is focused on environmental electrochemistry, electrocatalysis, fuel cell and electrochemical promotion in catalysis. An applied research for the utilization of electrochemical techniques in industry for the protection of the environment is a constant concern within his activities. As a result, the collaboration with the industry enabled the development of oxidation processes with regeneration of the oxidant using a new type of bipolar electrochemical reactor. Christos Comninellis has published over 170 scientific papers, directed 17 doctoral theses and holds 14 patents. He has participated in over 130 international symposia, giving five plenary lectures during the last five years. He has been president of the Evaluation Committee of the FSB since the beginning of 2004 and is member of the jury of the EPFL prize for outstanding PhD-thesis.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.