Independence-friendly logic (IF logic; proposed by Jaakko Hintikka and Gabriel Sandu in 1989) is an extension of classical first-order logic (FOL) by means of slashed quantifiers of the form and , where is a finite set of variables. The intended reading of is "there is a which is functionally independent from the variables in ". IF logic allows one to express more general patterns of dependence between variables than those which are implicit in first-order logic. This greater level of generality leads to an actual increase in expressive power; the set of IF sentences can characterize the same classes of structures as existential second-order logic ().
For example, it can express branching quantifier sentences, such as the formula which expresses infinity in the empty signature; this cannot be done in FOL. Therefore, first-order logic cannot, in general, express this pattern of dependency, in which depends only on and , and depends only on and . IF logic is more general than branching quantifiers, for example in that it can express dependencies that are not transitive, such as in the quantifier prefix , which expresses that depends on , and depends on , but does not depend on .
The introduction of IF logic was partly motivated by the attempt of extending the game semantics of first-order logic to games of imperfect information. Indeed, a semantics for IF sentences can be given in terms of these kinds of games (or, alternatively, by means of a translation procedure to existential second-order logic). A semantics for open formulas cannot be given in the form of a Tarskian semantics; an adequate semantics must specify what it means for a formula to be satisfied by a set of assignments of common variable domain (a team) rather than satisfaction by a single assignment. Such a team semantics was developed by Hodges.
Independence-friendly logic is translation equivalent, at the level of sentences, with a number of other logical systems based on team semantics, such as dependence logic, dependence-friendly logic, exclusion logic and independence logic; with the exception of the latter, IF logic is known to be equiexpressive to these logics also at the level of open formulas.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Dependence logic is a logical formalism, created by Jouko Väänänen, which adds dependence atoms to the language of first-order logic. A dependence atom is an expression of the form , where are terms, and corresponds to the statement that the value of is functionally dependent on the values of . Dependence logic is a logic of imperfect information, like branching quantifier logic or independence-friendly logic (IF logic): in other words, its game-theoretic semantics can be obtained from that of first-order logic by restricting the availability of information to the players, thus allowing for non-linearly ordered patterns of dependence and independence between variables.
In logic a branching quantifier, also called a Henkin quantifier, finite partially ordered quantifier or even nonlinear quantifier, is a partial ordering of quantifiers for Q ∈ {∀,∃}. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable ym bound by a quantifier Qm depends on the value of the variables y1, ..., ym−1 bound by quantifiers Qy1, ..., Qym−1 preceding Qm. In a logic with (finite) partially ordered quantification this is not in general the case.
Game semantics (dialogische Logik, translated as dialogical logic) is an approach to formal semantics that grounds the concepts of truth or validity on game-theoretic concepts, such as the existence of a winning strategy for a player, somewhat resembling Socratic dialogues or medieval theory of Obligationes. In the late 1950s Paul Lorenzen was the first to introduce a game semantics for logic, and it was further developed by Kuno Lorenz.
To design faster and more energy-efficient systems, numerous inexact arithmetic operators have been proposed, generally obtained by modifying the logic structure of conventional circuits. However, as the quality of service of an application has to be ensur ...
To design faster and more energy-efficient systems, numerous inexact arithmetic operators have been proposed, generally obtained by modifying the logic structure of conventional circuits. However, as the quality of service of an application has to be ensur ...
We formulate the novel class of contextual games, a type of repeated games driven by contextual information at each round. By means of kernel-based regularity assumptions, we model the correlation between different contexts and game out- comes and propose ...