Peripheral cycleIn graph theory, a peripheral cycle (or peripheral circuit) in an undirected graph is, intuitively, a cycle that does not separate any part of the graph from any other part. Peripheral cycles (or, as they were initially called, peripheral polygons, because Tutte called cycles "polygons") were first studied by , and play important roles in the characterization of planar graphs and in generating the cycle spaces of nonplanar graphs.
Circle packing theoremThe circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent.
Halin graphIn graph theory, a Halin graph is a type of planar graph, constructed by connecting the leaves of a tree into a cycle. The tree must have at least four vertices, none of which has exactly two neighbors; it should be drawn in the plane so none of its edges cross (this is called a planar embedding), and the cycle connects the leaves in their clockwise ordering in this embedding. Thus, the cycle forms the outer face of the Halin graph, with the tree inside it. Halin graphs are named after German mathematician Rudolf Halin, who studied them in 1971.
Polyhedral combinatoricsPolyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex).
Polyhedral graphIn geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-connected, planar graphs. The Schlegel diagram of a convex polyhedron represents its vertices and edges as points and line segments in the Euclidean plane, forming a subdivision of an outer convex polygon into smaller convex polygons (a convex drawing of the graph of the polyhedron).
K-vertex-connected graphIn graph theory, a connected graph G is said to be k-vertex-connected (or k-connected) if it has more than k vertices and remains connected whenever fewer than k vertices are removed. The vertex-connectivity, or just connectivity, of a graph is the largest k for which the graph is k-vertex-connected. A graph (other than a complete graph) has connectivity k if k is the size of the smallest subset of vertices such that the graph becomes disconnected if you delete them.
Dual graphIn the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e.
Geometric graph theoryGeometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are allowed to be arbitrary continuous curves connecting the vertices; thus, it can be described as "the theory of geometric and topological graphs" (Pach 2013).
Wheel graphIn the mathematical discipline of graph theory, a wheel graph is a graph formed by connecting a single universal vertex to all vertices of a cycle. A wheel graph with n vertices can also be defined as the 1-skeleton of an (n – 1)-gonal pyramid. Some authors write W_n to denote a wheel graph with n vertices (n ≥ 4); other authors instead use W_n to denote a wheel graph with n + 1 vertices (n ≥ 3), which is formed by connecting a single vertex to all vertices of a cycle of length n. The rest of this article uses the former notation.
Edge (geometry)In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a line segment on the boundary, and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces (or polyhedron sides) meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal.