In the geological timescale, the Tithonian is the latest age of the Late Jurassic Epoch and the uppermost stage of the Upper Jurassic Series. It spans the time between 149.2 ±0.7 Ma and 145.0 ± 4 Ma (million years ago). It is preceded by the Kimmeridgian and followed by the Berriasian (part of the Cretaceous).
The Tithonian was introduced in scientific literature by German stratigrapher Albert Oppel in 1865. The name Tithonian is unusual in geological stage names because it is derived from Greek mythology. Tithonus was the son of Laomedon of Troy and fell in love with Eos, the Greek goddess of dawn. His name was chosen by Albert Oppel for this stratigraphical stage because the Tithonian finds itself hand in hand with the dawn of the Cretaceous.
The base of the Tithonian stage is at the base of the ammonite biozone of Hybonoticeras hybonotum. A global reference profile (a GSSP or golden spike) for the base of the Tithonian had in 2009 not yet been established.
The top of the Tithonian stage (the base of the Berriasian Stage and the Cretaceous System) is marked by the first appearance of small globular calpionellids of the species Calpionella alpina, at the base of the Alpina Subzone .
The Tithonian is often subdivided into Lower/Early, Middle and Upper/Late substages or subages. The Late Tithonian is coeval with the Portlandian Age of British stratigraphy.
The Tithonian stage contains seven ammonite biozones in the Tethys domain, from top to base:
zone of Durangites
zone of Micracanthoceras micranthum
zone of Micracanthoceras ponti or Burckardticeras peroni
zone of Semiformiceras fallauxi
zone of Semiformiceras semiforme
zone of Semiformiceras darwini
zone of Hybonoticeras hybonotum
Sedimentary rocks that formed in the Tethys Ocean during the Tithonian include limestones, which preserve fossilized remains of, for example, cephalopods. The Solnhofen limestone of southern Germany, which is known for its fossils (especially Archaeopteryx), is of Tithonian age.
The later part of the Tithonian stage experienced an extinction event.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Spinosauridae (or spinosaurids) are a clade or family of tetanuran theropod dinosaurs comprising ten to seventeen known genera. Spinosaurid fossils have been recovered worldwide, including Africa, Europe, South America and Asia. Their remains have generally been attributed to the Early to Mid Cretaceous. Spinosaurids were large bipedal carnivores. Their crocodilian-like skulls were long, low and narrow, bearing conical teeth with reduced or absent serrations.
The Plesiosauria (ˌpliːsiəˈsɔːriə,_-zi-; Greek: πλησίος, plesios, meaning "near to" and sauros, meaning "lizard") or Plesiosaurs are an order or clade of extinct Mesozoic marine reptiles, belonging to the Sauropterygia. Plesiosaurs first appeared in the latest Triassic Period, possibly in the Rhaetian stage, about 203 million years ago. They became especially common during the Jurassic Period, thriving until their disappearance due to the Cretaceous–Paleogene extinction event at the end of the Cretaceous Period, about 66 million years ago.
The Solnhofen Limestone or Solnhofen Plattenkalk, formally known as the Altmühltal Formation, is a Jurassic Konservat-Lagerstätte that preserves a rare assemblage of fossilized organisms, including highly detailed imprints of soft bodied organisms such as sea jellies. The most familiar fossils of the Solnhofen Plattenkalk include the early feathered theropod dinosaur Archaeopteryx preserved in such detail that they are among the most famous and most beautiful fossils in the world.
Background: Scleractinian corals are currently a focus of major interest because of their ecological importance and the uncertain fate of coral reefs in the face of increasing anthropogenic pressure. Despite this, remarkably little is known about the evolu ...
2011
,
It was argued that, in contrast to all known modern scleractinian corals that form aragonite skeletons, the original mineralogy of the Cretaceous "Coelosmilia" (ca. 70-65 Ma) was calcite during a period when the Mg2+/Ca2+ ratio of the seawater was presumab ...
2019
, ,
Changes in seawater chemistry have affected the evolution of calcifying marine organisms, including their skeletal polymorph (calcite versus aragonite), which is believed to have been strongly influenced by the Mg/Ca ratio at the time these animals first e ...