A crash test dummy, or simply dummy, is a full-scale anthropomorphic test device (ATD) that simulates the dimensions, weight proportions and articulation of the human body during a traffic collision. Dummies are used by researchers, automobile and aircraft manufacturers to predict the injuries a person might sustain in a crash. Modern dummies are usually instrumented to record data such as velocity of impact, crushing force, bending, folding, or torque of the body, and deceleration rates during a collision.
Prior to the development of crash test dummies, automobile companies tested using human cadavers, animals and live volunteers. Cadavers have been used to modify different parts of a car, such as the seatbelt. This type of testing may provide more realistic test results than using a dummy, but it raises ethical dilemmas because human cadavers and animals are not able to consent to research studies. Animal testing is not prevalent today. Computational models of the human body are increasingly being used in the industry and research to complement the use of dummies as virtual tools.
There is a constant need for new testing because each new vehicle has a different design and as technology changes ATDs must be developed to accurately test safety and efficacy.
On August 31, 1869, Mary Ward became the first recorded victim of an automobile accident; the car involved was steam-powered (Karl Benz did not invent the gasoline-powered automobile until 1886). Ward, of Parsonstown, Ireland, was thrown out of a motor vehicle and killed. Thirty years later, on September 13, 1899, Henry Bliss became North America's first motor vehicle fatality when hit while stepping off a New York City trolley.
The need for a means of analyzing and mitigating the effects of motor vehicle accidents on humans was felt soon after commercial production of automobiles began in the late 1890s, and by the 1930s, when the automobile became a common part of daily life and the number of motor vehicle deaths were rising. Death rates had surpassed 15.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A crash test is a form of destructive testing usually performed in order to ensure safe design standards in crashworthiness and crash compatibility for various modes of transportation (see automobile safety) or related systems and components. Frontal-impact tests: which is what most people initially think of when asked about a crash test. Vehicles usually impact a solid concrete wall at a specified speed, but these can also be vehicle impacting vehicle tests.
Automotive safety is the study and practice of automotive design, construction, equipment and regulation to minimize the occurrence and consequences of traffic collisions involving motor vehicles. Road traffic safety more broadly includes roadway design. One of the first formal academic studies into improving motor vehicle safety was by Cornell Aeronautical Laboratory of Buffalo, New York. The main conclusion of their extensive report is the crucial importance of seat belts and padded dashboards.
Crashworthiness is the ability of a structure to protect its occupants during an impact. This is commonly tested when investigating the safety of aircraft and vehicles. Different criteria are used to figure out how safe a structure is in a crash, depending on the type of impact and the vehicle involved. Crashworthiness may be assessed either prospectively, using computer models (e.g., RADIOSS, LS-DYNA, PAM-CRASH, MSC Dytran, MADYMO) or experiments, or retrospectively, by analyzing crash outcomes.
An accelerometer is a device used to measure acceleration. Acceleration is the rate of change of an object’s velocity, measured in square meters per second [m/s2] or g force. This type of device is used to detect vibrations or the orientation of certain sy ...
2021
,
Blockchain systems need to solve consensus despite the presence of rational users and failures. The notion of (k, t)-robustness is key to derive impossibility results with k rational players and t faulty players. However, these t faulty players are always ...
Autonomous mobility devices such as transport, cleaning, and delivery robots, hold a massive economic and social benefit. However, their deployment should not endanger bystanders, particularly vulnerable populations such as children and older adults who ar ...