In organic chemistry, a methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms, having chemical formula . In formulas, the group is often abbreviated as Me. This hydrocarbon group occurs in many organic compounds. It is a very stable group in most molecules. While the methyl group is usually part of a larger molecule, bounded to the rest of the molecule by a single covalent bond (), it can be found on its own in any of three forms: methanide anion (), methylium cation () or methyl radical (CH3•). The anion has eight valence electrons, the radical seven and the cation six. All three forms are highly reactive and rarely observed. Methenium The methylium cation () exists in the gas phase, but is otherwise not encountered. Some compounds are considered to be sources of the cation, and this simplification is used pervasively in organic chemistry. For example, protonation of methanol gives an electrophilic methylating reagent that reacts by the SN2 pathway: Similarly, methyl iodide and methyl triflate are viewed as the equivalent of the methyl cation because they readily undergo SN2 reactions by weak nucleophiles. The methanide anion () exists only in rarefied gas phase or under exotic conditions. It can be produced by electrical discharge in ketene at low pressure (less than one torr) and its enthalpy of reaction is determined to be about 252.2kJ/mol. It is a powerful superbase; only the lithium monoxide anion () and the diethynylbenzene dianions are known to be stronger. In discussing mechanisms of organic reactions, methyl lithium and related Grignard reagents are often considered to be salts of ; and though the model may be useful for description and analysis, it is only a useful fiction. Such reagents are generally prepared from the methyl halides: where M is an alkali metal. Methyl radical The methyl radical has the formula CH3•. It exists in dilute gases, but in more concentrated form it readily dimerizes to ethane.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
ENV-202: Microbiology for engineers
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
CH-120: Advanced general chemistry II
Acquisition des notions fondamentales liées à la réactivité des molécules organiques, identification de la structure de petites molécules organiques au moyen des techniques de spectrométrie de masse,
CH-435: Asymmetric catalysis for fine chemicals synthesis
The asymmetric synthesis of fine chemicals is a research topic of growing importance for the synthesis of modern materials, drugs and agrochemicals. In this lecture, the concepts of asymmetric catalys
Show more
Related lectures (31)
Methanogenesis and Methane Oxidation
Explores methanogenesis, acetogenesis, and methane oxidation processes, enzymes, and energy generation mechanisms in anaerobic digesters and methanogenic species.
Photosynthesis: Anoxygenic Phototrophs and Carbon Fixation
Explores photosynthesis in anoxygenic phototrophs and the mechanisms of carbon fixation.
Coordination Chemistry: Ligands and Geometries
Covers coordination numbers, common ligands, and preferred geometries in coordination chemistry, emphasizing the spatial distribution between ligands and the role of d⁸ electron configurations.
Show more
Related publications (89)

Head‐to‐Tail Dimerization of N‐Heterocyclic Diazoolefins

Rosario Scopelliti, Kay Severin, Farzaneh Fadaei Tirani, Andrzej Sienkiewicz, Tak Hin Wong, Zhaowen Dong, Paul Varava, Anastasia Gitlina, Wolfram Feuerstein

The head-to-tail dimerization of N-heterocyclic diazoolefins is described. The products of these formal (3+3) cycloaddition reactions are strongly reducing quinoidal tetrazines. Oxidation of the tetrazines occurs in a stepwise fashion, and we were able to ...
2023

Recent progress in alkynylation with hypervalent iodine reagents

Jérôme Waser, Eliott Hugo Joran Le Du

Although alkynes are one of the smallest functional groups, they are among the most versatile building blocks for organic chemistry, with applications ranging from biochemistry to material sciences. Alkynylation reactions have traditionally relied on the u ...
ROYAL SOC CHEMISTRY2023

Surface-induced vibrational energy redistribution in methane/surface scattering depends on catalytic activity

Rainer Beck, Christopher Scott Reilly, Patrick Floss

Recent state-to-state experiments of methane scattering from Ni(111) and graphene-covered Ni(111) combined with quantum mechanical simulations suggest an intriguing correlation between the surface-induced vibrational energy redistribution (SIVR) during the ...
2023
Show more
Related concepts (29)
Methane
Methane (USˈmɛθeɪn , UKˈmiːθeɪn ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Earth makes it an economically attractive fuel, although capturing and storing it poses technical challenges due to its gaseous state under normal conditions for temperature and pressure. Naturally occurring methane is found both below ground and under the seafloor and is formed by both geological and biological processes.
Organic chemistry
Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. Study of structure determines their structural formula. Study of properties includes physical and chemical properties, and evaluation of chemical reactivity to understand their behavior.
Acetic acid
Acetic acid əˈsiːtᵻk, systematically named ethanoic acid ˌɛθəˈnoʊᵻk, is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water and other trace elements. Acetic acid is the second simplest carboxylic acid (after formic acid). It is an important chemical reagent and industrial chemical, used primarily in the production of cellulose acetate for photographic film, polyvinyl acetate for wood glue, and synthetic fibres and fabrics.
Show more
Related MOOCs (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.