Concept

Black hole electron

In physics, there is a speculative hypothesis that, if there were a black hole with the same mass, charge and angular momentum as an electron, it would share other properties of the electron. Most notably, Brandon Carter showed in 1968 that the magnetic moment of such an object would match that of an electron. This is interesting because calculations ignoring special relativity and treating the electron as a small rotating sphere of charge give a magnetic moment roughly half the experimental value (see Gyromagnetic ratio). However, Carter's calculations also show that a would-be black hole with these parameters would be "super-extremal". Thus, unlike a true black hole, this object would display a naked singularity, meaning a singularity in spacetime not hidden behind an event horizon. It would also give rise to closed timelike curves. Standard quantum electrodynamics (QED), currently the most comprehensive theory of particles, treats the electron as a point particle. There is no evidence that the electron is a black hole (or naked singularity) or not. Furthermore, since the electron is quantum-mechanical in nature, any description purely in terms of general relativity is paradoxical until a better model based on understanding of quantum nature of blackholes and gravitational behaviour of quantum particles is developed by research. Hence, the idea of a black hole electron remains strictly hypothetical. An article published in 1938 by Albert Einstein, Leopold Infeld and Banesh Hoffmann showed that, if elementary particles are treated as singularities in spacetime, it is unnecessary to postulate geodesic motion as part of general relativity. The electron may be treated as such a singularity. If one ignores the electron's angular momentum and charge, as well as the effects of quantum mechanics, one can treat the electron as a black hole and attempt to compute its radius. The Schwarzschild radius rs of a mass m is the radius of the event horizon for a non-rotating, uncharged black hole of that mass.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.