In physics, there is a speculative hypothesis that, if there were a black hole with the same mass, charge and angular momentum as an electron, it would share other properties of the electron. Most notably, Brandon Carter showed in 1968 that the magnetic moment of such an object would match that of an electron. This is interesting because calculations ignoring special relativity and treating the electron as a small rotating sphere of charge give a magnetic moment roughly half the experimental value (see Gyromagnetic ratio). However, Carter's calculations also show that a would-be black hole with these parameters would be "super-extremal". Thus, unlike a true black hole, this object would display a naked singularity, meaning a singularity in spacetime not hidden behind an event horizon. It would also give rise to closed timelike curves. Standard quantum electrodynamics (QED), currently the most comprehensive theory of particles, treats the electron as a point particle. There is no evidence that the electron is a black hole (or naked singularity) or not. Furthermore, since the electron is quantum-mechanical in nature, any description purely in terms of general relativity is paradoxical until a better model based on understanding of quantum nature of blackholes and gravitational behaviour of quantum particles is developed by research. Hence, the idea of a black hole electron remains strictly hypothetical. An article published in 1938 by Albert Einstein, Leopold Infeld and Banesh Hoffmann showed that, if elementary particles are treated as singularities in spacetime, it is unnecessary to postulate geodesic motion as part of general relativity. The electron may be treated as such a singularity. If one ignores the electron's angular momentum and charge, as well as the effects of quantum mechanics, one can treat the electron as a black hole and attempt to compute its radius. The Schwarzschild radius rs of a mass m is the radius of the event horizon for a non-rotating, uncharged black hole of that mass.
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer