Concept

Period 2 element

Summary
A period 2 element is one of the chemical elements in the second row (or period) of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases; a new row is started when chemical behavior begins to repeat, creating columns of elements with similar properties. The second period contains the elements lithium, beryllium, boron, carbon, nitrogen, oxygen, fluorine, and neon. In a quantum mechanical description of atomic structure, this period corresponds to the filling of the second (n = 2) shell, more specifically its 2s and 2p subshells. Period 2 elements (carbon, nitrogen, oxygen, fluorine and neon) obey the octet rule in that they need eight electrons to complete their valence shell (lithium and beryllium obey duet rule, boron is electron deficient.), where at most eight electrons can be accommodated: two in the 2s orbital and six in the 2p subshell. Period 2 is the first period in the periodic table from which periodic trends can be drawn. Period 1, which only contains two elements (hydrogen and helium), is too small to draw any conclusive trends from it, especially because the two elements behave nothing like other s-block elements. Period 2 has much more conclusive trends. For all elements in period 2, as the atomic number increases, the atomic radius of the elements decreases, the electronegativity increases, and the ionization energy increases. Period 2 only has two metals (lithium and beryllium) of eight elements, less than for any subsequent period both by number and by proportion. It also has the most number of nonmetals, namely five, among all periods. The elements in period 2 often have the most extreme properties in their respective groups; for example, fluorine is the most reactive halogen, neon is the most inert noble gas, and lithium is the least reactive alkali metal.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.