Abuse of notationIn mathematics, abuse of notation occurs when an author uses a mathematical notation in a way that is not entirely formally correct, but which might help simplify the exposition or suggest the correct intuition (while possibly minimizing errors and confusion at the same time). However, since the concept of formal/syntactical correctness depends on both time and context, certain notations in mathematics that are flagged as abuse in one context could be formally correct in one or more other contexts.
Absolute differenceThe absolute difference of two real numbers and is given by , the absolute value of their difference. It describes the distance on the real line between the points corresponding to and . It is a special case of the Lp distance for all and is the standard metric used for both the set of rational numbers and their completion, the set of real numbers . As with any metric, the metric properties hold: since absolute value is always non-negative. if and only if . (symmetry or commutativity).
Levenshtein distanceIn information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. Informally, the Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other. It is named after the Soviet mathematician Vladimir Levenshtein, who considered this distance in 1965.
Hausdorff distanceIn mathematics, the Hausdorff distance, or Hausdorff metric, also called Pompeiu–Hausdorff distance, measures how far two subsets of a metric space are from each other. It turns the set of non-empty compact subsets of a metric space into a metric space in its own right. It is named after Felix Hausdorff and Dimitrie Pompeiu. Informally, two sets are close in the Hausdorff distance if every point of either set is close to some point of the other set.
Hausdorff measureIn mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in or, more generally, in any metric space. The zero-dimensional Hausdorff measure is the number of points in the set (if the set is finite) or ∞ if the set is infinite.
Lebesgue covering dimensionIn mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way. For ordinary Euclidean spaces, the Lebesgue covering dimension is just the ordinary Euclidean dimension: zero for points, one for lines, two for planes, and so on. However, not all topological spaces have this kind of "obvious" dimension, and so a precise definition is needed in such cases.