Septic drain fields, also called leach fields or leach drains, are subsurface wastewater disposal facilities used to remove contaminants and impurities from the liquid that emerges after anaerobic digestion in a septic tank. Organic materials in the liquid are catabolized by a microbial ecosystem.
A septic drain field, a septic tank, and associated piping compose a septic system.
The drain field typically consists of an arrangement of trenches containing perforated pipes and porous material (often gravel) covered by a layer of soil to prevent animals (and surface runoff) from reaching the wastewater distributed within those trenches. Primary design considerations are both hydraulic for the volume of wastewater requiring disposal and catabolic for the long-term biochemical oxygen demand of that wastewater. The land area that is set aside for the septic drain field may be called a septic reserve area (SRA).
Sewage farms similarly dispose of wastewater through a series of ditches and lagoons (often with little or no pre-treatment). These are more often found in arid countries as the waterflow on the surface allows for irrigation (and fertilization) of agricultural land.
Many health departments require a percolation test ("perc" test) to establish the suitability of drain field soil to receive septic tank effluent. An engineer, soil scientist, or licensed designer may be required to work with the local governing agency to design a system that conforms to these criteria.
A more progressive way to determine leach field sizing is by direct observation of the soil profile. In this observation, the engineer evaluates many features of the soil such as texture, structure, consistency, pores/roots, etc.
The goal of percolation testing is to ensure the soil is permeable enough for septic tank effluent to percolate away from the drain field, but fine grained enough to filter out pathogenic bacteria and viruses before they travel far enough to reach a water well or surface water supply.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Sewage treatment (or domestic wastewater treatment, municipal wastewater treatment) is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from.
Onsite sewage facilities (OSSF), also called septic systems, are wastewater systems designed to treat and dispose of effluent on the same property that produces the wastewater, in areas not served by public sewage infrastructure. A septic tank and drainfield combination is a fairly common type of on-site sewage facility in the Western world. OSSFs account for approximately 25% of all domestic wastewater treatment in the US. Onsite sewage facilities may also be based on small-scale aerobic and biofilter units, membrane bioreactors or sequencing batch reactors.
A septic tank is an underground chamber made of concrete, fiberglass, or plastic through which domestic wastewater (sewage) flows for basic sewage treatment. Settling and anaerobic digestion processes reduce solids and organics, but the treatment efficiency is only moderate (referred to as "primary treatment"). Septic tank systems are a type of simple onsite sewage facility. They can be used in areas that are not connected to a sewerage system, such as rural areas.
Discusses mid-term exam results, efficient problem-solving in engineering, and wastewater treatment processes, including activated sludge treatment and granular activated carbon.
We study the drainage of a viscous liquid film coating the outside of a solid horizontal cylinder, where gravity acts vertically. We focus on the limit of large Ohnesorge numbers Oh, where inertia is negligible compared to viscous effects. We first study t ...
Amer Physical Soc2024
,
The response of the soil-structure interface can significantly affect the performance of any geotechnical structure. Thermal cycles are a new factor that influence the response to all structures that have an energy function in addition to the structural on ...
2022
,
Enteroviruses, which are commonly circulating viruses shed in the stool, are released into the sewage system and only partially removed or inactivated, resulting in the discharge of infectious enteroviruses into the environment. Activated sludge and chlori ...