Concept

Mariner 4

Summary
Mariner 4 (together with Mariner 3 known as Mariner-Mars 1964) was the fourth in a series of spacecraft intended for planetary exploration in a flyby mode. It was designed to conduct closeup scientific observations of Mars and to transmit these observations to Earth. Launched on November 28, 1964, Mariner 4 performed the first successful flyby of the planet Mars, returning the first close-up pictures of the Martian surface. It captured the first images of another planet ever returned from deep space; their depiction of a cratered, dead planet largely changed the scientific community's view of life on Mars. Other mission objectives were to perform field and particle measurements in interplanetary space in the vicinity of Mars and to provide experience in and knowledge of the engineering capabilities for interplanetary flights of long duration. Initially expected to remain in space for eight months, Mariner 4's mission lasted about three years in solar orbit. On December 21, 1967, communications with Mariner 4 were terminated. The Mariner 4 spacecraft consisted of an octagonal magnesium frame, across a diagonal and high. Four solar panels were attached to the top of the frame with an end-to-end span of , including solar pressure vanes which extended from the ends. A elliptical high-gain parabolic antenna was mounted at the top of the frame as well. An omnidirectional low-gain antenna was mounted on a tall mast next to the high-gain antenna. The overall height of the spacecraft was . The octagonal frame housed the electronic equipment, cabling, midcourse propulsion system, and attitude control gas supplies and regulators. The scientific instruments included: A helium magnetometer, mounted on the waveguide leading to the omnidirectional antenna, to measure the magnitude and other characteristics of the interplanetary and planetary magnetic fields. An ionization chamber/Geiger counter, mounted on the waveguide leading to the omnidirectional antenna nearer the body of the spacecraft, to measure the charged-particle intensity and distribution in interplanetary space and in the vicinity of Mars.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.