Concept

Motorola 68020

The Motorola 68020 ("sixty-eight-oh-twenty", "sixty-eight-oh-two-oh" or "six-eight-oh-two-oh") is a 32-bit microprocessor from Motorola, released in 1984. A lower-cost version was also made available, known as the 68EC020. In keeping with naming practices common to Motorola designs, the 68020 is usually referred to as the "020", pronounced "oh-two-oh" or "oh-twenty". The 020 was in the market for a relatively short time. The Motorola 68030 was announced in September 1986 and began deliveries in the summer of 1987. Priced about the same as the 020 of the time, the 030 was significantly faster and quickly replaced in 020 in almost every use. At the time the Motorola 68000 was designed, Motorola's design and fabrication services were outdated. Although even small companies like MOS Technologies and Zilog had moved on to silicon gate depletion mode NMOS logic on ever-larger wafers, Motorola was still using metal gates and enhancement mode and their largest fab worked on 4-inch wafers long after most lines had moved to 5-inch. Although the 68000 met the goal of being the fastest CPU available when it was introduced, it was not nearly as powerful as it could be if it had been designed with more modern techniques. During the period of the 68000 design, the company was working with Hitachi on their process technology and as part of this they opened a new fab, MOS-8, using 5-inch wafers and the latest HMOS process licensed from Intel. This line was capable of building all of the new techniques, but the 68000 went ahead with the older design as they were sure it would work. Moving to new design techniques would wait until the design was in the market. The conversion to the new design techniques took place during the Motorola 68010 effort, a relatively minor upgrade to the original design that added basic virtual memory support for the emerging Unix workstation market. As this effort was ongoing, Motorola was canvassing their customers for their desires for future developments in the line. These all pointed to a fully 32-bit implementation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Neuromorphic Computing: Challenges & Future
Compares digital and neuromorphic computing, highlighting challenges and future prospects in the field.
Neuromorphic Computing: Challenges and Future
Discusses the challenges and future of neuromorphic computing, comparing digital computers and specialized hardware, such as SpiNNaker and NEST, while exploring the Human Brain Project's Neuromorphic Computing Platform.
Related publications (12)

Genome Sequence Alignment - Design Space Exploration for Optimal Performance and Energy Architectures

David Atienza Alonso, Marina Zapater Sancho, Yasir Mahmood Qureshi, José Manuel Herruzo Ruiz

Next generation workloads, such as genome sequencing, have an astounding impact in the healthcare sector. Sequence alignment, the first step in genome sequencing, has experienced recent breakthroughs, which resulted in next generation sequencing (NGS). As ...
2020

Microarchitectural Low-Power Design Techniques for Embedded Microprocessors

Jeremy Hugues-Felix Constantin

With the omnipresence of embedded processing in all forms of electronics today, there is a strong trend towards wireless, battery-powered, portable embedded systems which have to operate under stringent energy constraints. Consequently, low power consumpti ...
EPFL2016

Unlocking Controllable-Polarity Transistors Opportunities by Exclusive-OR and Majority Logic Synthesis

Giovanni De Micheli, Pierre-Emmanuel Julien Marc Gaillardon, Luca Gaetano Amarù

For more than four decades, Complementary Metal-Oxide- Semiconductor (CMOS) Field Effect Transistors (FETs) have been the baseline technology for implementing digital computation systems. CMOS transistors natively implement Not-AND ...
2014
Show more
Related concepts (20)
Motorola 68030
The Motorola 68030 ("sixty-eight-oh-thirty") is a 32-bit microprocessor in the Motorola 68000 family. It was released in 1987. The 68030 was the successor to the Motorola 68020, and was followed by the Motorola 68040. In keeping with general Motorola naming, this CPU is often referred to as the 030 (pronounced oh-three-oh or oh-thirty). The 68030 is essentially a 68020 with a memory management unit (MMU) and instruction and data caches of 256 bytes each.
Motorola 68040
The Motorola 68040 ("sixty-eight-oh-forty") is a 32-bit microprocessor in the Motorola 68000 series, released in 1990. It is the successor to the 68030 and is followed by the 68060, skipping the 68050. In keeping with general Motorola naming, the 68040 is often referred to as simply the '040 (pronounced oh-four-oh or oh-forty). The 68040 was the first 680x0 family member with an on-chip Floating-Point Unit (FPU). It thus included all of the functionality that previously required external chips, namely the FPU and Memory Management Unit (MMU), which was added in the 68030.
Motorola 68000 series
The Motorola 68000 series (also known as 680x0, m68000, m68k, or 68k) is a family of 32-bit complex instruction set computer (CISC) microprocessors. During the 1980s and early 1990s, they were popular in personal computers and workstations and were the primary competitors of Intel's x86 microprocessors.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.