In immunology, affinity maturation is the process by which TFH cell-activated B cells produce antibodies with increased affinity for antigen during the course of an immune response. With repeated exposures to the same antigen, a host will produce antibodies of successively greater affinities. A secondary response can elicit antibodies with several fold greater affinity than in a primary response. Affinity maturation primarily occurs on membrane immunoglobulin of germinal center B cells and as a direct result of somatic hypermutation (SHM) and selection by TFH cells.
TOC
The process is thought to involve two interrelated processes, occurring in the germinal centers of the secondary lymphoid organs:
Somatic hypermutation: Mutations in the variable, antigen-binding coding sequences (known as complementarity-determining regions (CDR)) of the immunoglobulin genes. The mutation rate is up to 1,000,000 times higher than in cell lines outside the lymphoid system. Although the exact mechanism of the SHM is still not known, a major role for the activation-induced (cytidine) deaminase has been discussed. The increased mutation rate results in 1-2 mutations per CDR and, hence, per cell generation. The mutations alter the binding specificity and binding affinities of the resultant antibodies.
Clonal selection: B cells that have undergone SHM must compete for limiting growth resources, including the availability of antigen and paracrine signals from TFH cells. The follicular dendritic cells (FDCs) of the germinal centers present antigen to the B cells, and the B cell progeny with the highest affinities for antigen, having gained a competitive advantage, are favored for positive selection leading to their survival. Positive selection is based on steady cross-talk between TFH cells and their cognate antigen presenting GC B cell. Because a limited number of TFH cells reside in the germinal center, only highly competitive B cells stably conjugate with TFH cells and thus receive T cell-dependent survival signals.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours décrit le fonctionnement du système immunitaire humain et les bases immunologiques de la vaccination, de la transplantation, de l'immunothérapie, et de l'allergie. Il présente aussi le rôle d
Humoral immunity is the aspect of immunity that is mediated by macromolecules - including secreted antibodies, complement proteins, and certain antimicrobial peptides - located in extracellular fluids. Humoral immunity is named so because it involves substances found in the humors, or body fluids. It contrasts with cell-mediated immunity. Humoral immunity is also referred to as antibody-mediated immunity. The study of the molecular and cellular components that form the immune system, including their function and interaction, is the central science of immunology.
The adaptive immune system, also known as the acquired immune system, or specific immune system is a subsystem of the immune system that is composed of specialized, systemic cells and processes that eliminate pathogens or prevent their growth. The acquired immune system is one of the two main immunity strategies found in vertebrates (the other being the innate immune system). Like the innate system, the adaptive immune system includes both humoral immunity components and cell-mediated immunity components and destroys invading pathogens.
An immune response is a physiological reaction which occurs within an organism in the context of inflammation for the purpose of defending against exogenous factors. These include a wide variety of different toxins, viruses, intra- and extracellular bacteria, protozoa, helminths, and fungi which could cause serious problems to the health of the host organism if not cleared from the body. In addition, there are other forms of immune response.
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Explores B cell activation in response to T-dependent antigens, including signal transduction and antigen presentation to T cells.
Vaccine technology is still facing challenges regarding some infectious diseases, which can be addressed by innovative drug delivery systems. In particular, nanoparticle-based vaccines combined with new types of adjuvants are actively explored as a platfor ...
Hematopoietic Stem and Progenitor Cells (HSPCs) reside in their niche, a structure that regulates the balance of cellular quiescence, self-renewal and commitment towards differentiated cells. This highly plastic niche is formed by several cellular players, ...
Multiple myeloma is a prevalent and incurable disease, despite the development of new and effective drugs. The recent development of chimeric antigen receptor (CAR)T cells has shown impressive results in the treatment of patients with relapsed or refractor ...