Saliva (commonly referred to as spit) is an extracellular fluid produced and secreted by salivary glands in the mouth. In humans, saliva is around 99% water, plus electrolytes, mucus, white blood cells, epithelial cells (from which DNA can be extracted), enzymes (such as lipase and amylase), antimicrobial agents (such as secretory IgA, and lysozymes).
The enzymes found in saliva are essential in beginning the process of digestion of dietary starches and fats. These enzymes also play a role in breaking down food particles entrapped within dental crevices, thus protecting teeth from bacterial decay. Saliva also performs a lubricating function, wetting food and permitting the initiation of swallowing, and protecting the oral mucosa from drying out.
Various animal species have special uses for saliva that go beyond predigestion. Some swifts use their gummy saliva to build nests. Aerodramus nests form the basis of bird's nest soup.
Cobras, vipers, and certain other members of the venom clade hunt with venomous saliva injected by fangs. Some caterpillars produce silk fiber from silk proteins stored in modified salivary glands (which are unrelated to the vertebrate ones).
Produced in salivary glands, human saliva comprises 99.5% water, but also contains many important substances, including electrolytes, mucus, antibacterial compounds and various enzymes. Medically, constituents of saliva can noninvasively provide important diagnostic information related to oral and systemic diseases.
Water: 99.5%
Electrolytes:
2–21 mmol/L sodium (lower than blood plasma)
10–36 mmol/L potassium (higher than plasma)
1.2–2.8 mmol/L calcium (similar to plasma)
0.08–0.5 mmol/L magnesium
5–40 mmol/L chloride (lower than plasma)
25 mmol/L bicarbonate (higher than plasma)
1.4–39 mmol/L phosphate
Iodine (mmol/L concentration is usually higher than plasma, but dependent variable according to dietary iodine intake)
Mucus (mucus in saliva mainly consists of mucopolysaccharides and glycoproteins)
Antibacterial compounds (thiocyanate, hydrogen peroxide, and secretory immunoglobulin A)
Epidermal growth factor (EGF)
Saliva eliminates caesium, which can substitute for potassium in the cells.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours est une préparation intensive à l'examen d'entrée en 3ème année de Médecine. Les matières enseignées sont la morphologie macroscopique (anatomie) , microscopique (histologie) de la tête, du c
Ce cours permet aux étudiants ayant suivi Morphologie I de réviser et d'approfondir leurs connaissances par l'étude de l'anatomie radiologique et du développement. L'origine de malformations fréquente
The salivary glands in many vertebrates including mammals are exocrine glands that produce saliva through a system of ducts. Humans have three paired major salivary glands (parotid, submandibular, and sublingual), as well as hundreds of minor salivary glands. Salivary glands can be classified as serous, mucous, or seromucous (mixed). In serous secretions, the main type of protein secreted is alpha-amylase, an enzyme that breaks down starch into maltose and glucose, whereas in mucous secretions, the main protein secreted is mucin, which acts as a lubricant.
The tongue is a muscular organ in the mouth of a typical tetrapod. It manipulates food for chewing and swallowing as part of the digestive process, and is the primary organ of taste. The tongue's upper surface (dorsum) is covered by taste buds housed in numerous lingual papillae. It is sensitive and kept moist by saliva and is richly supplied with nerves and blood vessels. The tongue also serves as a natural means of cleaning the teeth. A major function of the tongue is the enabling of speech in humans and vocalization in other animals.
Swallowing, sometimes called deglutition in scientific contexts, is the process in the human or animal body that allows for a substance to pass from the mouth, to the pharynx, and into the esophagus, while shutting the epiglottis. Swallowing is an important part of eating and drinking. If the process fails and the material (such as food, drink, or medicine) goes through the trachea, then choking or pulmonary aspiration can occur. In the human body the automatic temporary closing of the epiglottis is controlled by the swallowing reflex.
Explores the anatomy and functions of salivary glands, saliva composition, secretion regulation, and Sjogren's syndrome.
Explores the microscopic structure of the pancreas and its cellular components.
Discusses the morphology and classification of sweat glands, exocrine gland secretions, and examples from the pancreas and salivary glands.
In this thesis, we explored on-chip high-resolution imaging of the fate of intestinal bacteria and bacterial products in Caenorhabditis elegans (C. elegans). In the first part, we carried out high-resolution z-stack fluorescent imaging of Red Fluorescent P ...
Interactions between food and saliva govern complex mouthfeel perceptions such as astringency. Herein, we present a study of the interactions of salivary proteins with the main pea protein fractions that are obtained by isoelectric and salt precipitation ( ...
London2023
, , , , ,
After the spread of COVID-19, surgical masks became highly recommended to the public. They tend to be handled and used multiple times, which may impact their performance. To evaluate this risk, surgical masks of Type IIR were submitted to four simulated tr ...