Loss-of-coolant accidentA loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor; if not managed effectively, the results of a LOCA could result in reactor core damage. Each nuclear plant's emergency core cooling system (ECCS) exists specifically to deal with a LOCA. Nuclear reactors generate heat internally; to remove this heat and convert it into useful electrical power, a coolant system is used. If this coolant flow is reduced, or lost altogether, the nuclear reactor's emergency shutdown system is designed to stop the fission chain reaction.
Plutonium-239Plutonium-239 (239Pu or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years.
IrradiationIrradiation is the process by which an object is exposed to radiation. An irradiator is a device used to expose an object to radiation, notably gamma radiation, for a variety of purposes. Irradiators may be used for sterilizing medical and pharmaceutical supplies, preserving foodstuffs, alteration of gemstone colors, studying radiation effects, eradicating insects through sterile male release programs, or calibrating thermoluminescent dosimeters (TLDs). The exposure can originate from various sources, including natural sources.
AmericiumAmericium is a synthetic radioactive chemical element with the symbol Am and atomic number 95. It is a transuranic member of the actinide series, in the periodic table located under the lanthanide element europium and was thus named after the United States by analogy. Americium was first produced in 1944 by the group of Glenn T. Seaborg from Berkeley, California, at the Metallurgical Laboratory of the University of Chicago, as part of the Manhattan Project.
Tributyl phosphateTributyl phosphate, known commonly as TBP, is an organophosphorus compound with the chemical formula (CH3CH2CH2CH2O)3PO. This colourless, odorless liquid finds some applications as an extractant and a plasticizer. It is an ester of phosphoric acid with n-butanol. Tributyl phosphate is manufactured by reaction of phosphoryl chloride with n-butanol. POCl3 + 3 C4H9OH → PO(OC4H9)3 + 3 HCl Production is estimated at 3,000–5,000 tonnes worldwide. TBP is a solvent and plasticizer for cellulose esters such as nitrocellulose and cellulose acetate.
Isotope separationIsotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" nuclide are used to figure out reaction mechanisms). By tonnage, separating natural uranium into enriched uranium and depleted uranium is the largest application. In the following text, mainly uranium enrichment is considered.
DounreayDounreay (ˌduːnˈreɪ; Dùnrath) is a small settlement and the site of two large nuclear establishments on the north coast of Caithness in the Highland area of Scotland. It is on the A836 road west of Thurso. The nuclear establishments were created in the 1950s. They were the Nuclear Power Development Establishment (NPDE) for the development of civil fast breeder reactors, and the Vulcan Naval Reactor Test Establishment (NRTE), a military submarine reactor testing facility.
ActinideThe actinide (ˈæktᵻnaɪd) or actinoid (ˈæktᵻnɔɪd) series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium. The actinide series derives its name from the first element in the series, actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide. The 1985 IUPAC Red Book recommends that actinoid be used rather than actinide, since the suffix -ide normally indicates a negative ion.
Radioisotope thermoelectric generatorA radioisotope thermoelectric generator (RTG, RITEG), sometimes referred to as a radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect. This type of generator has no moving parts. Because they don't need solar energy, RTGs are ideal for remote and harsh environments for extended periods of time, and because they have no moving parts, there is no risk of parts wearing out or malfunctioning.
Fertile materialFertile material is a material that, although not fissile itself, can be converted into a fissile material by neutron absorption. Naturally occurring fertile materials that can be converted into a fissile material by irradiation in a reactor include: thorium-232 which converts into uranium-233 uranium-234 which converts into uranium-235 uranium-238 which converts into plutonium-239 Artificial isotopes formed in the reactor which can be converted into fissile material by one neutron capture include: plutonium-238 which converts into plutonium-239 plutonium-240 which converts into plutonium-241 Some other actinides need more than one neutron capture before arriving at an isotope which is both fissile and long-lived enough to probably be able to capture another neutron and fission instead of decaying.