Summary
Quantum tomography or quantum state tomography is the process by which a quantum state is reconstructed using measurements on an ensemble of identical quantum states. The source of these states may be any device or system which prepares quantum states either consistently into quantum pure states or otherwise into general mixed states. To be able to uniquely identify the state, the measurements must be tomographically complete. That is, the measured operators must form an operator basis on the Hilbert space of the system, providing all the information about the state. Such a set of observations is sometimes called a quorum. The term tomography was first used in the quantum physics literature in a 1993 paper introducing experimental optical homodyne tomography. In quantum process tomography on the other hand, known quantum states are used to probe a quantum process to find out how the process can be described. Similarly, quantum measurement tomography works to find out what measurement is being performed. Whereas, randomized benchmarking scalably obtains a figure of merit of the overlap between the error prone physical quantum process and its ideal counterpart. The general principle behind quantum state tomography is that by repeatedly performing many different measurements on quantum systems described by identical density matrices, frequency counts can be used to infer probabilities, and these probabilities are combined with Born's rule to determine a density matrix which fits the best with the observations. This can be easily understood by making a classical analogy. Consider a harmonic oscillator (e.g. a pendulum). The position and momentum of the oscillator at any given point can be measured and therefore the motion can be completely described by the phase space. This is shown in figure 1. By performing this measurement for a large number of identical oscillators we get a probability distribution in the phase space (figure 2). This distribution can be normalized (the oscillator at a given time has to be somewhere) and the distribution must be non-negative.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.