Constant (computer programming)In computer programming, a constant is a value that should not be altered by the program during normal execution, i.e., the value is constant. When associated with an identifier, a constant is said to be "named," although the terms "constant" and "named constant" are often used interchangeably. This is contrasted with a variable, which is an identifier with a value that can be changed during normal execution, i.e., the value is variable.
Inline functionIn the C and C++ programming languages, an inline function is one qualified with the keyword inline; this serves two purposes: It serves as a compiler directive that suggests (but does not require) that the compiler substitute the body of the function inline by performing inline expansion, i.e. by inserting the function code at the address of each function call, thereby saving the overhead of a function call. In this respect it is analogous to the register storage class specifier, which similarly provides an optimization hint.
End-user developmentEnd-user development (EUD) or end-user programming (EUP) refers to activities and tools that allow end-users – people who are not professional software developers – to program computers. People who are not professional developers can use EUD tools to create or modify software artifacts (descriptions of automated behavior) and complex data objects without significant knowledge of a programming language. In 2005 it was estimated (using statistics from the U.S.
Lex (software)Lex is a computer program that generates lexical analyzers ("scanners" or "lexers"). Lex is commonly used with the yacc parser generator. Lex, originally written by Mike Lesk and Eric Schmidt and described in 1975, is the standard lexical analyzer generator on many Unix systems, and an equivalent tool is specified as part of the POSIX standard. Lex reads an input stream specifying the lexical analyzer and writes source code which implements the lexical analyzer in the C programming language.
Directive (programming)In computer programming, a directive or pragma (from "pragmatic") is a language construct that specifies how a compiler (or other translator) should process its input. Directives are not part of the grammar of a programming language, and may vary from compiler to compiler. They can be processed by a preprocessor to specify compiler behavior, or function as a form of in-band parameterization. In some cases directives specify global behavior, while in other cases they only affect a local section, such as a block of programming code.
CAR and CDRIn computer programming, CAR (car) kɑr and CDR (cdr) (ˈkʌdər or ˈkʊdər) are primitive operations on cons cells (or "non-atomic S-expressions") introduced in the Lisp programming language. A cons cell is composed of two pointers; the car operation extracts the first pointer, and the cdr operation extracts the second. Thus, the expression (car (cons x y)) evaluates to x, and (cdr (cons x y)) evaluates to y.
Strict programming languageA strict programming language is a programming language which employs a strict programming paradigm, allowing only strict functions (functions whose parameters must be evaluated completely before they may be called) to be defined by the user. A non-strict programming language allows the user to define non-strict functions, and hence may allow lazy evaluation. Nearly all programming languages in common use today are strict. Examples include C#, Java, Perl (all versions, i.e.
Async/awaitIn computer programming, the async/await pattern is a syntactic feature of many programming languages that allows an asynchronous, non-blocking function to be structured in a way similar to an ordinary synchronous function. It is semantically related to the concept of a coroutine and is often implemented using similar techniques, and is primarily intended to provide opportunities for the program to execute other code while waiting for a long-running, asynchronous task to complete, usually represented by promises or similar data structures.