The myxobacteria ("slime bacteria") are a group of bacteria that predominantly live in the soil and feed on insoluble organic substances. The myxobacteria have very large genomes relative to other bacteria, e.g. 9–10 million nucleotides except for Anaeromyxobacter and Vulgatibacter. One species of myxobacteria, Minicystis rosea, has the largest known bacterial genome with over 16 million nucleotides. The second largest is another myxobacteria Sorangium cellulosum. Myxobacteria can move by gliding. They typically travel in swarms (also known as wolf packs), containing many cells kept together by intercellular molecular signals. Individuals benefit from aggregation as it allows accumulation of the extracellular enzymes that are used to digest food; this in turn increases feeding efficiency. Myxobacteria produce a number of biomedically and industrially useful chemicals, such as antibiotics, and export those chemicals outside the cell. Myxobacteria are used to study the polysaccharide production in gram-negative bacteria like the model Myxococcus xanthus which have four different mechanisms of polysaccharide secretion and where a new Wzx/Wzy mechanism producing a new polysaccharide was identified in 2020. Myxobacteria are also good models to study the multicellularity in the bacterial world. When nutrients are scarce, myxobacterial cells aggregate into fruiting bodies (not to be confused with those in fungi), a process long-thought to be mediated by chemotaxis but now considered to be a function of a form of contact-mediated signaling. These fruiting bodies can take different shapes and colors, depending on the species. Within the fruiting bodies, cells begin as rod-shaped vegetative cells, and develop into rounded myxospores with thick cell walls. These myxospores, analogous to spores in other organisms, are more likely to survive until nutrients are more plentiful. The fruiting process is thought to benefit myxobacteria by ensuring that cell growth is resumed with a group (swarm) of myxobacteria, rather than as isolated cells.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.