Summary
In relational database theory, a functional dependency is a constraint between two sets of attributes in a relation from a database. In other words, a functional dependency is a constraint between two attributes in a relation. Given a relation R and sets of attributes , X is said to functionally determine Y (written X → Y) if and only if each X value in R is associated with precisely one Y value in R; R is then said to satisfy the functional dependency X → Y. Equivalently, the projection is a function, i.e. Y is a function of X. In simple words, if the values for the X attributes are known (say they are x), then the values for the Y attributes corresponding to x can be determined by looking them up in any tuple of R containing x. Customarily X is called the determinant set and Y the dependent set. A functional dependency FD: X → Y is called trivial if Y is a subset of X. In other words, a dependency FD: X → Y means that the values of Y are determined by the values of X. Two tuples sharing the same values of X will necessarily have the same values of Y. The determination of functional dependencies is an important part of designing databases in the relational model, and in database normalization and denormalization. A simple application of functional dependencies is Heath's theorem; it says that a relation R over an attribute set U and satisfying a functional dependency X → Y can be safely split in two relations having the lossless-join decomposition property, namely into where Z = U − XY are the rest of the attributes. (Unions of attribute sets are customarily denoted by there juxtapositions in database theory.) An important notion in this context is a candidate key, defined as a minimal set of attributes that functionally determine all of the attributes in a relation. The functional dependencies, along with the attribute domains, are selected so as to generate constraints that would exclude as much data inappropriate to the user domain from the system as possible.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
MATH-201: Analysis III
Calcul différentiel et intégral. Eléments d'analyse complexe.
CS-422: Database systems
This course is intended for students who want to understand modern large-scale data analysis systems and database systems. It covers a wide range of topics and technologies, and will prepare students