Summary
Homogeneous Charge Compression Ignition (HCCI) is a form of internal combustion in which well-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. As in other forms of combustion, this exothermic reaction produces heat that can be transformed into work in a heat engine. HCCI combines characteristics of conventional gasoline engine and diesel engines. Gasoline engines combine homogeneous charge (HC) with spark ignition (SI), abbreviated as HCSI. Modern direct injection diesel engines combine stratified charge (SC) with compression ignition (CI), abbreviated as SCCI. As in HCSI, HCCI injects fuel during the intake stroke. However, rather than using an electric discharge (spark) to ignite a portion of the mixture, HCCI raises density and temperature by compression until the entire mixture reacts spontaneously. Stratified charge compression ignition also relies on temperature and density increase resulting from compression. However, it injects fuel later, during the compression stroke. Combustion occurs at the boundary of the fuel and air, producing higher emissions, but allowing a leaner and higher compression burn, producing greater efficiency. Controlling HCCI requires microprocessor control and physical understanding of the ignition process. HCCI designs achieve gasoline engine-like emissions with diesel engine-like efficiency. HCCI engines achieve extremely low levels of oxides of nitrogen emissions (NOx) without a catalytic converter. Hydrocarbons (unburnt fuels and oils) and carbon monoxide emissions still require treatment to meet automobile emissions control regulations. Recent research has shown that the hybrid fuels combining different reactivities (such as gasoline and diesel) can help in controlling HCCI ignition and burn rates. RCCI, or reactivity controlled compression ignition, has been demonstrated to provide highly efficient, low emissions operation over wide load and speed ranges. HCCI engines have a long history, even though HCCI has not been as widely implemented as spark ignition or diesel injection.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.