Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Transfinite inductionTransfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. Let be a property defined for all ordinals . Suppose that whenever is true for all , then is also true. Then transfinite induction tells us that is true for all ordinals. Usually the proof is broken down into three cases: Zero case: Prove that is true. Successor case: Prove that for any successor ordinal , follows from (and, if necessary, for all ).
UrelementIn set theory, a branch of mathematics, an urelement or ur-element (from the German prefix ur-, 'primordial') is an object that is not a set, but that may be an element of a set. It is also referred to as an atom or individual. There are several different but essentially equivalent ways to treat urelements in a first-order theory. One way is to work in a first-order theory with two sorts, sets and urelements, with a ∈ b only defined when b is a set. In this case, if U is an urelement, it makes no sense to say , although is perfectly legitimate.
Order typeIn mathematics, especially in set theory, two ordered sets X and Y are said to have the same order type if they are order isomorphic, that is, if there exists a bijection (each element pairs with exactly one in the other set) such that both f and its inverse are monotonic (preserving orders of elements). In the special case when X is totally ordered, monotonicity of f already implies monotonicity of its inverse. One and the same set may be equipped with different orders.