Submillimetre astronomy or submillimeter astronomy (see spelling differences) is the branch of observational astronomy that is conducted at submillimetre wavelengths (i.e., terahertz radiation) of the electromagnetic spectrum. Astronomers place the submillimetre waveband between the far-infrared and microwave wavebands, typically taken to be between a few hundred micrometres and a millimetre. It is still common in submillimetre astronomy to quote wavelengths in 'microns', the old name for micrometre. Using submillimetre observations, astronomers examine molecular clouds and dark cloud cores with a goal of clarifying the process of star formation from earliest collapse to stellar birth. Submillimetre observations of these dark clouds can be used to determine chemical abundances and cooling mechanisms for the molecules which comprise them. In addition, submillimetre observations give information on the mechanisms for the formation and evolution of galaxies. The most significant limitations to the detection of astronomical emission at submillimetre wavelengths with ground-based observatories are atmospheric emission, noise and attenuation. Like the infrared, the submillimetre atmosphere is dominated by numerous water vapour absorption bands and it is only through "windows" between these bands that observations are possible. The ideal submillimetre observing site is dry, cool, has stable weather conditions and is away from urban population centres. Only a handful of such have been sites identified. They include Mauna Kea (Hawaii, United States), the Llano de Chajnantor Observatory on the Atacama Plateau (Chile), the South Pole, and Hanle in India (the Himalayan site of the Indian Astronomical Observatory). Comparisons show that all four sites are excellent for submillimetre astronomy, and of these sites Mauna Kea is the most established and arguably the most accessible.
Mihai Adrian Ionescu, Teodor Rosca, Fatemeh Qaderi Rahaqi
Mihai Adrian Ionescu, Ali Gilani, Daesung Park, Fatemeh Qaderi Rahaqi