Summary
Quartz clocks and quartz watches are timepieces that use an electronic oscillator regulated by a quartz crystal to keep time. This crystal oscillator creates a signal with very precise frequency, so that quartz clocks and watches are at least an order of magnitude more accurate than mechanical clocks. Generally, some form of digital logic counts the cycles of this signal and provides a numerical time display, usually in units of hours, minutes, and seconds. Since the 1980s, when the advent of solid-state digital electronics allowed them to be made compact and inexpensive, quartz timekeepers have become the world's most widely used timekeeping technology, used in most clocks and watches as well as computers and other appliances that keep time. Chemically, quartz is a specific form of a compound called silicon dioxide. Many materials can be formed into plates that will resonate. However, quartz is also a piezoelectric material: that is, when a quartz crystal is subject to mechanical stress, such as bending, it accumulates electrical charge across some planes. In a reverse effect, if charges are placed across the crystal plane, quartz crystals will bend. Since quartz can be directly driven (to flex) by an electric signal, no additional transducer is required to use it in a resonator. Similar crystals are used in low-end phonograph cartridges: The movement of the stylus (needle) flexes a quartz crystal, which produces a small voltage, which is amplified and played through speakers. Quartz microphones are still available, though not common. Quartz has a further advantage in that its size does not change much as temperature fluctuates. Fused quartz is often used for laboratory equipment that must not change shape along with the temperature. A quartz plate's resonance frequency, based on its size, will not significantly rise or fall. Similarly, since its resonator does not change shape, a quartz clock will remain relatively accurate as the temperature changes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
PHYS-101(j): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
EE-110: Logic systems (for MT)
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn