In machine learning, early stopping is a form of regularization used to avoid overfitting when training a learner with an iterative method, such as gradient descent. Such methods update the learner so as to make it better fit the training data with each iteration. Up to a point, this improves the learner's performance on data outside of the training set. Past that point, however, improving the learner's fit to the training data comes at the expense of increased generalization error. Early stopping rules provide guidance as to how many iterations can be run before the learner begins to over-fit. Early stopping rules have been employed in many different machine learning methods, with varying amounts of theoretical foundation.
This section presents some of the basic machine-learning concepts required for a description of early stopping methods.
Overfitting
Machine learning algorithms train a model based on a finite set of training data. During this training, the model is evaluated based on how well it predicts the observations contained in the training set. In general, however, the goal of a machine learning scheme is to produce a model that generalizes, that is, that predicts previously unseen observations. Overfitting occurs when a model fits the data in the training set well, while incurring larger generalization error.
Regularization (mathematics)
Regularization, in the context of machine learning, refers to the process of modifying a learning algorithm so as to prevent overfitting. This generally involves imposing some sort of smoothness constraint on the learned model.
This smoothness may be enforced explicitly, by fixing the number of parameters in the model, or by augmenting the cost function as in Tikhonov regularization. Tikhonov regularization, along with principal component regression and many other regularization schemes, fall under the umbrella of spectral regularization, regularization characterized by the application of a filter. Early stopping also belongs to this class of methods.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning is a sub-field of Artificial Intelligence that allows computers to learn from data, identify patterns and make predictions. As a fundamental building block of the Computational Thinki
Computer environments such as educational games, interactive simulations, and web services provide large amounts of data, which can be analyzed and serve as a basis for adaptation. This course will co
In statistics and machine learning, the bias–variance tradeoff is the property of a model that the variance of the parameter estimated across samples can be reduced by increasing the bias in the estimated parameters. The bias–variance dilemma or bias–variance problem is the conflict in trying to simultaneously minimize these two sources of error that prevent supervised learning algorithms from generalizing beyond their training set: The bias error is an error from erroneous assumptions in the learning algorithm.
Machine learning (ML) is an umbrella term for solving problems for which development of algorithms by human programmers would be cost-prohibitive, and instead the problems are solved by helping machines 'discover' their 'own' algorithms, without needing to be explicitly told what to do by any human-developed algorithms. Recently, generative artificial neural networks have been able to surpass results of many previous approaches.
In machine learning, boosting is an ensemble meta-algorithm for primarily reducing bias, and also variance in supervised learning, and a family of machine learning algorithms that convert weak learners to strong ones. Boosting is based on the question posed by Kearns and Valiant (1988, 1989): "Can a set of weak learners create a single strong learner?" A weak learner is defined to be a classifier that is only slightly correlated with the true classification (it can label examples better than random guessing).
Covers overfitting, regularization, and cross-validation in machine learning, exploring polynomial curve fitting, feature expansion, kernel functions, and model selection.
This paper studies kernel ridge regression in high dimensions under covariate shifts and analyzes the role of importance re-weighting. We first derive the asymptotic expansion of high dimensional kernels under covariate shifts. By a bias-variance decomposi ...
Control systems operating in real-world environments often face disturbances arising from measurement noise and model mismatch. These factors can significantly impact the perfor- mance and safety of the system. In this thesis, we aim to leverage data to de ...
This paper details the approach of the team Kohrrelation in the 2021 Extreme Value Analysis data challenge, dealing with the prediction of wildfire counts and sizes over the contiguous US. Our approach uses ideas from extreme-value theory in a machine lear ...