Concept

Ordinal arithmetic

Summary
In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations. The union of two disjoint well-ordered sets S and T can be well-ordered. The order-type of that union is the ordinal that results from adding the order-types of S and T. If two well-ordered sets are not already disjoint, then they can be replaced by order-isomorphic disjoint sets, e.g. replace S by {0} × S and T by {1} × T. This way, the well-ordered set S is written "to the left" of the well-ordered set T, meaning one defines an order on S T in which every element of S is smaller than every element of T. The sets S and T themselves keep the ordering they already have. The definition of addition α + β can also be given by transfinite recursion on β: α + 0 = α α + S(β) = S(α + β), where S denotes the successor function. when β is a limit ordinal. Ordinal addition on the natural numbers is the same as standard addition. The first transfinite ordinal is ω, the set of all natural numbers, followed by ω + 1, ω + 2, etc. The ordinal ω + ω is obtained by two copies of the natural numbers ordered in the usual fashion and the second copy completely to the right of the first. Writing 0' < 1' < 2' < ... for the second copy, ω + ω looks like 0 < 1 < 2 < 3 < ... < 0' < 1' < 2' < ... This is different from ω because in ω only 0 does not have a direct predecessor while in ω + ω the two elements 0 and 0' do not have direct predecessors. Ordinal addition is, in general, not commutative. For example, 3 + ω = ω since the order relation for 3 + ω is 0 < 1 < 2 < 0' < 1' < 2' < ..., which can be relabeled to ω.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.