**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Functional data analysis

Summary

Functional data analysis (FDA) is a branch of statistics that analyses data providing information about curves, surfaces or anything else varying over a continuum. In its most general form, under an FDA framework, each sample element of functional data is considered to be a random function. The physical continuum over which these functions are defined is often time, but may also be spatial location, wavelength, probability, etc. Intrinsically, functional data are infinite dimensional. The high intrinsic dimensionality of these data brings challenges for theory as well as computation, where these challenges vary with how the functional data were sampled. However, the high or infinite dimensional structure of the data is a rich source of information and there are many interesting challenges for research and data analysis.
Functional data analysis has roots going back to work by Grenander and Karhunen in the 1940s and 1950s. They considered the decomposition of square-integrable continuous time stochastic process into eigencomponents, now known as the Karhunen-Loève decomposition. A rigorous analysis of functional principal components analysis was done in the 1970s by Kleffe, Dauxois and Pousse including results about the asymptotic distribution of the eigenvalues. More recently in the 1990s and 2000s the field has focused more on applications and understanding the effects of dense and sparse observations schemes. The term "Functional Data Analysis" was coined by James O. Ramsay.
Random functions can be viewed as random elements taking values in a Hilbert space, or as a stochastic process. The former is mathematically convenient, whereas the latter is somewhat more suitable from an applied perspective. These two approaches coincide if the random functions are continuous and a condition called mean-squared continuity is satisfied.
In the Hilbert space viewpoint, one considers an -valued random element , where is a separable Hilbert space such as the space of square-integrable functions .

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (16)

Related people (4)

Related units (2)

Victor Panaretos, Tomas Rubin, Tomas Masák

Nonparametric inference for functional data over two-dimensional domains entails additional computational and statistical challenges, compared to the one-dimensional case. Separability of the covariance is commonly assumed to address these issues in the densely observed regime. Instead, we consider the sparse regime, where the latent surfaces are observed only at few irregular locations with additive measurement error, and propose an estimator of covariance based on local linear smoothers. Consequently, the assumption of separability reduces the intrinsically four-dimensional smoothing problem into several two-dimensional smoothers and allows the proposed estimator to retain the classical minimax-optimal convergence rate for two-dimensional smoothers. Even when separability fails to hold, imposing it can be still advantageous as a form of regularization. A simulation study reveals a favorable bias-variance tradeoff and massive speed-ups achieved by our approach. Finally, the proposed methodology is used for qualitative analysis of implied volatility surfaces corresponding to call options, and for prediction of the latent surfaces based on information from the entire dataset, allowing for uncertainty quantification. Our cross-validated out-of-sample quantitative results show that the proposed methodology outperforms the common approach of pre-smoothing every implied volatility surface separately. Supplementary materials for this article are available online.

Functional time series is a temporally ordered sequence of not necessarily independent random curves. While the statistical analysis of such data has been traditionally carried out under the assumption of completely observed functional data, it may well happen that the statistician only has access to a relatively low number of sparse measurements for each random curve. These discrete measurements may be moreover irregularly scattered in each curve's domain, missing altogether for some curves, and be contaminated by measurement noise. This sparse sampling protocol escapes from the reach of established estimators in functional time series analysis and therefore requires development of a novel methodology.
The core objective of this thesis is development of a non-parametric statistical toolbox for analysis of sparsely observed functional time series data. Assuming smoothness of the latent curves, we construct a local-polynomial-smoother based estimator of the spectral density operator producing a consistent estimator of the complete second order structure of the data. Moreover, the spectral domain recovery approach allows for prediction of latent curve data at a given time by borrowing strength from the estimated dynamic correlations in the entire time series across time. Further to predicting the latent curves from their noisy point samples, the method fills in gaps in the sequence (curves nowhere sampled), denoises the data, and serves as a basis for forecasting.
A classical non-parametric apparatus for encoding the dependence between a pair of or among a multiple functional time series, whether sparsely or fully observed, is the functional lagged regression model. This consists of a linear filter between the regressors time series and the response. We show how to tailor the smoother based estimators for the estimation of the cross-spectral density operators and the cross-covariance operators and, by means of spectral truncation and Tikhonov regularisation techniques, how to estimate the lagged regression filter and predict the response process.
The simulation studies revealed the following findings: (i) if one has freedom to design a sampling scheme with a fixed number of measurements, it is advantageous to sparsely distribute these measurements in a longer time horizon rather than concentrating over a shorter time horizon to achieve dense measurements in order to diminish the spectral density estimation error, (ii) the developed functional recovery predictor surpasses the static predictor not exploiting the temporal dependence, (iii) neither of the two considered regularisation techniques can, in general, dominate the other for the estimation in functional lagged regression models. The new methodologies are illustrated by applications to real data: the meteorological data revolving around the fair-weather atmospheric electricity measured in Tashkent, Uzbekistan, and at Wank mountain, Germany; and a case study analysing the dependence of the US Treasury yield curve on macroeconomic variables.
As a secondary contribution, we present a novel simulation method for general stationary functional time series defined through their spectral properties. A simulation study shows universality of such approach and superiority of the spectral domain simulation over the temporal domain in some situations.

Victor Panaretos, Anirvan Chakraborty

We develop theory and methodology for the problem of nonparametric registration of functional data that have been subjected to random deformation (warping) of their time scale. The separation of this phase variation ("horizontal" variation) from the amplitude variation ("vertical" variation) is crucial in order to properly conduct further analyses, which otherwise can be severely distorted. We determine precise nonparametric conditions under which the two forms of variation are identifiable. These show that the identifiability delicately depends on the underlying rank. By means of several counterexamples, we demonstrate that our conditions are sharp if one wishes a genuinely nonparametric setup; and in doing so we caution that popular remedies such as structural assumptions or roughness penalties can easily fail. We then propose a nonparametric registration method based on a "local variation measure", the main element in elucidating identifiability. A key advantage of the method is that it is free of any tuning or penalisation parameters regulating the amount of alignment, thus circumventing the problem of over/under-registration often encountered in practice. We provide asymptotic theory for the resulting estimators under the identifiable regime, but also under mild departures from identifiability, quantifying the resulting bias in terms of the amplitude variation's spectral gap.

2021