Homeothermy, homothermy or homoiothermy is thermoregulation that maintains a stable internal body temperature regardless of external influence. This internal body temperature is often, though not necessarily, higher than the immediate environment (from Greek ὅμοιος homoios "similar" and θέρμη thermē "heat"). Homeothermy is one of the three types of thermoregulation in warm-blooded animal species. Homeothermy's opposite is poikilothermy. A poikilotherm is an organism that does not maintain a fixed internal temperature but rather fluctuates based on their environment and physical behaviour.
Homeotherms are not necessarily endothermic. Some homeotherms may maintain constant body temperatures through behavioral mechanisms alone, i.e., behavioral thermoregulation. Many reptiles use this strategy. For example, desert lizards are remarkable in that they maintain near-constant activity temperatures that are often within a degree or two of their lethal critical temperatures.
Enzymes have a relatively narrow temperature range at which their efficiencies are optimal. Temperatures outside this range can greatly reduce the rate of a reaction or stop it altogether. A creature with a fairly constant body temperature can therefore specialize in enzymes which are efficient at that particular temperature. A poikilotherm must either operate well below optimum efficiency most of the time, migrate, hibernate or expend extra resources producing a wider range of enzymes to cover the wider range of body temperatures.
However, some environments offer much more consistent temperatures than others. For example, the tropics often have seasonal variations in temperature that are smaller than their diurnal variations. In addition, large bodies of water, such as the ocean and very large lakes, have moderate temperature variations. The waters below the ocean surface are particularly stable in temperature.
Because many homeothermic animals use enzymes that are specialized for a narrow range of body temperatures, hypothermia rapidly leads to torpor and then death.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation. The internal thermoregulation process is one aspect of homeostasis: a state of dynamic stability in an organism's internal conditions, maintained far from thermal equilibrium with its environment (the study of such processes in zoology has been called physiological ecology).
An ectotherm (from the Greek ἐκτός () "outside" and θερμός () "heat"), more commonly referred to as a "cold-blooded animal", is an animal in which internal physiological sources of heat are of relatively small or of quite negligible importance in controlling body temperature. Such organisms (for example frogs) rely on environmental heat sources, which permit them to operate at very economical metabolic rates. Some of these animals live in environments where temperatures are practically constant, as is typical of regions of the abyssal ocean and hence can be regarded as homeothermic ectotherms.
A fish (: fish or fishes) is an aquatic, craniate, gill-bearing animal that lacks limbs with digits. Included in this definition are the living hagfish, lampreys, and cartilaginous and bony fish as well as various extinct related groups. Approximately 95% of living fish species are ray-finned fish, belonging to the class Actinopterygii, with around 99% of those being teleosts. The earliest organisms that can be classified as fish were soft-bodied chordates that first appeared during the Cambrian period.
Objective The study was undertaken to show the magnitude of interindividual differences in energy expenditure (i.e., heat production) under normal living conditions with the aim of providing physiological evidence to support the advancement of a personaliz ...
WILEY2022
Indoor temperature maintenance represents a large portion of the energy used in buildings and reducing dependence on energy-intensive thermal conditioning systems would benefit our fight against climate change as well as potentially have positive effects o ...
2022
, , ,
Sunlight, temperature, and microbial grazing are among the environmental factors promoting the inactivation of viral pathogens in surface waters. Globally, these factors vary across time and space. The persistence of viral pathogens, and ultimately their e ...