Timestamp-based concurrency controlIn computer science, a timestamp-based concurrency control algorithm is a non-lock concurrency control method. It is used in some databases to safely handle transactions, using timestamps. Every timestamp value is unique and accurately represents an instant in time. A higher-valued timestamp occurs later in time than a lower-valued timestamp. A number of different ways have been used to generate timestamp Use the value of the system's clock at the start of a transaction as the timestamp.
SerializabilityIn concurrency control of databases, transaction processing (transaction management), and various transactional applications (e.g., transactional memory and software transactional memory), both centralized and distributed, a transaction schedule is serializable if its outcome (e.g., the resulting database state) is equal to the outcome of its transactions executed serially, i.e. without overlapping in time. Transactions are normally executed concurrently (they overlap), since this is the most efficient way.
Lock (computer science)In computer science, a lock or mutex (from mutual exclusion) is a synchronization primitive: a mechanism that enforces limits on access to a resource when there are many threads of execution. A lock is designed to enforce a mutual exclusion concurrency control policy, and with a variety of possible methods there exists multiple unique implementations for different applications. Generally, locks are advisory locks, where each thread cooperates by acquiring the lock before accessing the corresponding data.
Two-phase lockingIn databases and transaction processing, two-phase locking (2PL) is a concurrency control method that guarantees serializability. It is also the name of the resulting set of database transaction schedules (histories). The protocol uses locks, applied by a transaction to data, which may block (interpreted as signals to stop) other transactions from accessing the same data during the transaction's life. By the 2PL protocol, locks are applied and removed in two phases: Expanding phase: locks are acquired and no locks are released.
Isolation (database systems)In database systems, isolation determines how transaction integrity is visible to other users and systems. A lower isolation level increases the ability of many users to access the same data at the same time, but increases the number of concurrency effects (such as dirty reads or lost updates) users might encounter. Conversely, a higher isolation level reduces the types of concurrency effects that users may encounter, but requires more system resources and increases the chances that one transaction will block another.
Distributed transactionA distributed transaction is a database transaction in which two or more network hosts are involved. Usually, hosts provide transactional resources, while the transaction manager is responsible for creating and managing a global transaction that encompasses all operations against such resources. Distributed transactions, as any other transactions, must have all four ACID (atomicity, consistency, isolation, durability) properties, where atomicity guarantees all-or-nothing outcomes for the unit of work (operations bundle).
Concurrent computingConcurrent computing is a form of computing in which several computations are executed concurrently—during overlapping time periods—instead of sequentially—with one completing before the next starts. This is a property of a system—whether a program, computer, or a network—where there is a separate execution point or "thread of control" for each process. A concurrent system is one where a computation can advance without waiting for all other computations to complete. Concurrent computing is a form of modular programming.
Global serializabilityIn concurrency control of databases, transaction processing (transaction management), and other transactional distributed applications, global serializability (or modular serializability) is a property of a global schedule of transactions. A global schedule is the unified schedule of all the individual database (and other transactional object) schedules in a multidatabase environment (e.g., federated database).
Multiversion concurrency controlMultiversion concurrency control (MCC or MVCC), is a concurrency control method commonly used by database management systems to provide concurrent access to the database and in programming languages to implement transactional memory. Without concurrency control, if someone is reading from a database at the same time as someone else is writing to it, it is possible that the reader will see a half-written or inconsistent piece of data.
File systemIn computing, a file system or filesystem (often abbreviated to fs) is a method and data structure that the operating system uses to control how data is stored and retrieved. Without a file system, data placed in a storage medium would be one large body of data with no way to tell where one piece of data stopped and the next began, or where any piece of data was located when it was time to retrieve it. By separating the data into pieces and giving each piece a name, the data are easily isolated and identified.