In model theory, a branch of mathematical logic, and in algebra, the reduced product is a construction that generalizes both direct product and ultraproduct. Let {Si | i ∈ I} be a family of structures of the same signature σ indexed by a set I, and let U be a filter on I. The domain of the reduced product is the quotient of the Cartesian product by a certain equivalence relation ~: two elements (ai) and (bi) of the Cartesian product are equivalent if If U only contains I as an element, the equivalence relation is trivial, and the reduced product is just the original Cartesian product. If U is an ultrafilter, the reduced product is an ultraproduct. Operations from σ are interpreted on the reduced product by applying the operation pointwise. Relations are interpreted by For example, if each structure is a vector space, then the reduced product is a vector space with addition defined as (a + b)i = ai + bi and multiplication by a scalar c as (ca)i = c ai.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.