The lotus effect refers to self-cleaning properties that are a result of ultrahydrophobicity as exhibited by the leaves of Nelumbo, the lotus flower. Dirt particles are picked up by water droplets due to the micro- and nanoscopic architecture on the surface, which minimizes the droplet's adhesion to that surface. Ultrahydrophobicity and self-cleaning properties are also found in other plants, such as Tropaeolum (nasturtium), Opuntia (prickly pear), Alchemilla, cane, and also on the wings of certain insects. The phenomenon of ultrahydrophobicity was first studied by Dettre and Johnson in 1964 using rough hydrophobic surfaces. Their work developed a theoretical model based on experiments with glass beads coated with paraffin or PTFE telomer. The self-cleaning property of ultrahydrophobic micro-nanostructured surfaces was studied by Wilhelm Barthlott and Ehler in 1977, who described such self-cleaning and ultrahydrophobic properties for the first time as the "lotus effect"; perfluoroalkyl and perfluoropolyether ultrahydrophobic materials were developed by Brown in 1986 for handling chemical and biological fluids. Other biotechnical applications have emerged since the 1990s. The high surface tension of water causes droplets to assume a nearly spherical shape, since a sphere has minimal surface area, and this shape therefore minimizes the solid-liquid surface energy. On contact of liquid with a surface, adhesion forces result in wetting of the surface. Either complete or incomplete wetting may occur depending on the structure of the surface and the fluid tension of the droplet. The cause of self-cleaning properties is the hydrophobic water-repellent double structure of the surface. This enables the contact area and the adhesion force between surface and droplet to be significantly reduced, resulting in a self-cleaning process. This hierarchical double structure is formed out of a characteristic epidermis (its outermost layer called the cuticle) and the covering waxes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (22)

Mechanistic Insight into Supramolecular Polymerization in Water Tunable by Molecular Geometry

Lukas Pfeifer

Supramolecular self-assembly in water based on non-covalent bonding is attracting major attention due to the potential of hydrogels and aqueous polymers in biomedical applications. Although supramolecular polymerization in organic solvents is well establis ...
CHINESE CHEMICAL SOC2022
Show more
Related concepts (1)
Ultrahydrophobicity
In chemistry and materials science, ultrahydrophobic (or superhydrophobic) surfaces are highly hydrophobic, i.e., extremely difficult to wet. The contact angles of a water droplet on an ultrahydrophobic material exceed 150°. This is also referred to as the lotus effect, after the superhydrophobic leaves of the lotus plant. A droplet striking these kinds of surfaces can fully rebound like an elastic ball. Interactions of bouncing drops can be further reduced using special superhydrophobic surfaces that promote symmetry breaking, pancake bouncing or waterbowl bouncing.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.