Silylation is the introduction of one or more (usually) substituted silyl groups (R3Si) to a molecule. Silylations are core methods for production of organosilicon chemistry. Silanization involves similar methods but usually refers to attachment of silyl groups to solids.
Alcohols, carboxylic acids, amines, thiols, and phosphates can be silylated. The process involves the replacement of a proton or an anion with a trialkylsilyl group, typically trimethylsilyl (-SiMe3), as illustrated by the synthesis of a trimethylsilyl ethers from alcohols and trimethylsilyl chloride (Me = CH3):
Generally a base is employed to absorb the HCl coproduct.
Bis(trimethylsilyl)acetamide ("BSA", Me3SiNC(OSiMe3)Me is an efficient silylation agent. The reaction of BSA with alcohols gives the corresponding trimethylsilyl ether, together with acetamide as a byproduct (Me = CH3):
Silylation has two main uses: manipulation of functional groups and preparation of samples for analysis.
Often silylation is employed to protect OH and NH groups. The derivatives, silyl ethers and silyl amides, are resilient toward many reagents that would attack their precursors. The other main role of silylation is to trap silyl enol ethers, which represent a reactive tautomer of many carbonyl compounds.
The introduction of a silyl group(s) gives derivatives of enhanced volatility, making the derivatives suitable for analysis by gas chromatography and electron-impact mass spectrometry (EI-MS). For EI-MS, the silyl derivatives give more favorable diagnostic fragmentation patterns of use in structure investigations, or characteristic ions of use in trace analyses employing selected ion monitoring and related techniques.
Desilylation is the reverse of silylation: the silyl group is exchanged for a proton. Various fluoride salts (e.g. sodium, potassium, tetra-n-butylammonium fluorides) are popular for this purpose.
ROSiMe3 + F− + H2O → ROH + FSiMe3 + OH−
Transition metal silyl complexes
Coordination complexes with silyl ligands are well known.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Organosilicon chemistry is the study of organometallic compounds containing carbon–silicon bonds, to which they are called organosilicon compounds. Most organosilicon compounds are similar to the ordinary organic compounds, being colourless, flammable, hydrophobic, and stable to air. Silicon carbide is an inorganic compound. Organometallic chemistry In 1863 Charles Friedel and James Crafts made the first organochlorosilane compound. The same year they also described a «polysilicic acid ether» in the preparation of ethyl- and methyl-o-silicic acid.
We report the functionalization of cysteine residues with lipophilic alkynes bearing a silyl group or an alkyl chain using amphiphilic ethynylbenziodoxolone reagents (EBXs). The reactions were carried out in buffer (pH 6 to 9), without organic co-solvent o ...
Under mild dual photoredox/copper catalysis, the reaction of N-alkoxypyridinium salts with readily available silyl reagents (TMSN3, TMSCN, TMSNCS) afforded d-azido, d-cyano, and d-thiocyanato alcohols in high yields. The reaction went through a domino proc ...
Carbosilylation of alkenes can be an efficient approach to the synthesis of organosilicon compounds. However, few general methods of carbosilylation are known. Here, we introduce a strategy for arylsilylation of electron deficient terminal alkenes by combi ...