Concept

Universal bundle

In mathematics, the universal bundle in the theory of fiber bundles with structure group a given topological group G, is a specific bundle over a classifying space BG, such that every bundle with the given structure group G over M is a pullback by means of a continuous map M → BG. When the definition of the classifying space takes place within the homotopy of CW complexes, existence theorems for universal bundles arise from Brown's representability theorem. We will first prove: Proposition. Let G be a compact Lie group. There exists a contractible space EG on which G acts freely. The projection EG → BG is a G-principal fibre bundle. Proof. There exists an injection of G into a unitary group U(n) for n big enough. If we find EU(n) then we can take EG to be EU(n). The construction of EU(n) is given in classifying space for U(n). The following Theorem is a corollary of the above Proposition. Theorem. If M is a paracompact manifold and P → M is a principal G-bundle, then there exists a map f : M → BG, unique up to homotopy, such that P is isomorphic to f ∗(EG), the pull-back of the G-bundle EG → BG by f. Proof. On one hand, the pull-back of the bundle π : EG → BG by the natural projection P ×G EG → BG is the bundle P × EG. On the other hand, the pull-back of the principal G-bundle P → M by the projection p : P ×G EG → M is also P × EG Since p is a fibration with contractible fibre EG, sections of p exist. To such a section s we associate the composition with the projection P ×G EG → BG. The map we get is the f we were looking for. For the uniqueness up to homotopy, notice that there exists a one-to-one correspondence between maps f : M → BG such that f ∗(EG) → M is isomorphic to P → M and sections of p. We have just seen how to associate a f to a section. Inversely, assume that f is given. Let Φ : f ∗(EG) → P be an isomorphism: Now, simply define a section by Because all sections of p are homotopic, the homotopy class of f is unique. The total space of a universal bundle is usually written EG.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.